Search Results
114 items found for ""
- Profile | OmniSci Magazine
We can’t find the page you’re looking for This page doesn’t exist. Go to Home and keep exploring. Go to Home
- Where The Wild Things Were | OmniSci Magazine
Where The Wild Things Were By Ashleigh Hallinan We may consider ourselves to be the most advanced species on the planet, but this has come at the cost of the natural world. Delve into this article to gain insight into how ecosystem restoration plays a role in nature-based solutions for biodiversity loss and climate change mitigation globally. Edited by Niesha Baker & Caitlin Kane Issue 1: September 24, 2021 Illustration by Jess Nguyen The scale of threats posed to humanity and the natural world is confronting and difficult to grasp. The natural world is being pushed towards its brink, but it’s not too late to act. Ecosystem restoration plays an important role in nature-based solutions for biodiversity loss, food insecurity, and climate change. Global discourse and action also need to continue moving towards greater acknowledgement of Traditional Owners and local communities in biodiversity conservation efforts and climate change resilience. Ecosystem degradation is an accelerating calamity of our own making. A recent study from Frontier Forest and Global Change shows that humans have altered 97 per cent of the Earth's land, meaning a mere 3 per cent of land remains untouched, or ‘ecologically intact’ (1). ‘Ecosystem degradation’ refers to the loss of natural productivity from environments as a result of human activity. Many of the world’s ecosystems have been pushed beyond the point of unassisted self-recovery due to a mix of stressors, most of which are human-induced. Ecosystems are made up of interacting organisms and the physical environment in which they are found, so disturbing the balance of an ecosystem can be disastrous for all the living things relying on it, including humans. If trends of ecosystem degradation continue, 95 per cent of the Earth’s land could become degraded by 2050 (2). In this scenario, we would face irreversible damage. But how does this affect you and me? Beyond the role ecosystem degradation plays in accelerating climate change and the loss of countless species from our planet, its impact on ecosystem services is also of great significance. Ecosystem services are the benefits humans derive from the natural environment. These range from the oxygen we breathe to aesthetic appreciation of the natural environments around us. These services are necessary for life to exist on Earth, and without them, our quality of life would decline drastically. Luckily for us, humans are capable of learning from their mistakes, and efforts are being made to address these global concerns. Ecosystem restoration is the process of reversing ecosystem degradation to regain environmental health and sustainability. This often involves re-introducing plant and animal populations that may have been lost, as well as restoring their habitats. Abandoned farmland is one example of where this can be achieved. Farmlands are one of the most vital ecosystems in sustaining humankind. Not only do they provide us with food, but they are also home to a variety of organisms within and above the soil. Many of these organisms play a critical role in soil health, which is essential for agriculture. Agriculture has transformed human societies and fuelled a global population that has grown from one billion to almost eight billion people since around 1804 (3). This has had significant consequences on natural systems worldwide, particularly as farmland has continuously expanded into surrounding landscapes. Agroecosystems now cover around 40 per cent of Earth's terrestrial surface (4). However, despite a growing demand for food due to the world’s rapidly increasing population, the amount of farmland being abandoned outweighs the amount of land being converted to farmland (5). There are an estimated 950 million to 1.1 billion acres of deserted farmland globally (6). This unproductive farmland could be converted to meet conservation goals and mitigate the impacts of climate change. For example, farmland could be regenerated with carbon-capturing forests. These would contribute to sequestering large amounts of anthropogenic CO2, water retention, soil fertility, and providing habitats for a variety of organisms. Abandoned farmland could also be re-established with native vegetation to provide habitats for animals. This was the case at the Monjebup Nature Reserves, located in south-west Western Australia (WA) on Noongar Country, established by Bush Heritage Australia between 2007 and 2014 (7). Despite being a biodiversity hotspot, animals and plants in the Monjebup Nature Reserves have faced many threats. These were mainly in the form of introduced species and land clearing for agriculture. Decades of land clearing resulted in a transition from deep-rooted woody vegetation systems to shallow-rooted annual cropping systems across the south-western Australian landscape. This caused a decrease in natural habitats and accumulation of salt in soil and water, which contributed significantly to biodiversity loss. In 2007, Bush Heritage Australia secured the Monjebup Nature Reserves in a bid to establish important conservation areas. Since then, they have restored nearly 1,000 acres of cleared land in the north of the Reserve (8). An important contributor to the success of this project was Indigenous knowledge, which reflects a long history of close connection with the land. These unique human-land relationships provide opportunities for learning in environmental research, particularly regarding land management and sustainability. The Monjebup Nature Reserves now protect a significant patch of native bushland on the land of the Noongar-Minang and Koreng people. This has been critical in restoring the heavily cleared landscape between WA's Stirling Ranges and Fitzgerald River National Parks, reconnecting remnant bush in the south with that of the Corackerup Nature Reserve further north. It has also provided habitat for vulnerable animal species such as the Malleefowl, Western Whipbird, Carnaby's Cockatoo, and Tammar Wallaby. Local knowledge plays a critical role in re-introducing plants and animals by identifying species suitable to particular environments. In the Monjebup Nature Reserves, re-introduction of native plants involved research on local plant communities and soil conditions in immediately surrounding areas. This research also involved communication with Traditional Owners who had used the area for gathering raw materials, food processing, hunting, stone tool manufacturing, and seasonal movement over millennia (9). Seeds of suitable flora were then collected in and around the site for the restoration works. It is crucial that consultation with Traditional Owners, like that seen in the Monjebup Nature Reserves project, becomes a more common practice. An estimated 37 per cent of all remaining natural lands are under Indigenous management (10). These lands protect 80 per cent of global biodiversity and the majority of intact forests, highlighting the value of Indigenous knowledge (11). We have left ourselves a challenging yet attainable goal. Raising public awareness on the importance of ecosystems and improving our knowledge on the interconnectedness of the natural world will be key to decreasing our impacts on Earth's incredible ecosystems. In March 2019, the United Nations General Assembly announced 2021 to 2030 as the Decade on Ecosystem Restoration (12). El Salvador’s Minister of Environment and Natural Resources, Lina Pohl, proposed the creation of the Decade in a speech to the General Assembly. More than 70 countries from all latitudes quickly jumped on board, committing to safeguarding and restoring ecosystems globally (13). 2030 also happens to be the deadline for the Sustainable Development Goals, which are a collection of 17 interlinked global goals designed to address the global challenges we face, and provide a ‘blueprint to achieve a better and more sustainable future for all’ (14). 2030 is also the year scientists have identified as the last chance to prevent catastrophic climate change (15). As part of the Decade on Ecosystem Restoration, the United Nations has called for countries to make the pledge to restore at least 2.5 billion acres of degraded land - an area larger than China (16). This will require international cooperation, led by the UN Environment Programme and the Food and Agriculture Organisation. Humans have an essential role in halting and reversing the damage that has been caused so far. Ecosystem restoration is not a quick or easy process. It requires deep, systematic changes to the economic, political, and social systems we currently have in place. But the natural world is finite, and it is important we continue taking steps towards a more sustainable future. References: 1. Plumptre, Andrew J., Daniele Baisero, R. Travis Belote, Ella Vázquez-Domínguez, Soren Faurby, Włodzimierz Jȩdrzejewski, Henry Kiara, Hjalmar Kühl, Ana Benítez-López, Carlos Luna-Aranguré, Maria Voigt, Serge Wich, William Wint, Juan Gallego-Zamorano, Charlotte Boyd . “Where Might We Find Ecologically Intact Communities?” Frontiers in Forests and Global Change 4 (15 April 2021): 1-13. https://doi.org/10.3389/ffgc.2021.626635. 2, 4. Scholes, Robert, L Montanarella, Anastasia Brainich, Nichole Barger. “The Assessment Report on Land Degradation and Restoration: Summary for Policymakers”. Bonn, Germany: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), 2018. https://ipbes.net/sites/default/files/2018_ldr_full_report_book_v4_pages.pdf 3. Food and Agriculture Organisation of the United Nations,“FAOSTAT”, Accessed 8 September 2021, http://www.fao.org/faostat/en/#home . 5, 6. Yang, Yi, Sarah E. Hobbie, Rebecca R. Hernandez, Joseph Fargione, Steven M. Grodsky, David Tilman, Yong-Guan Zhu, Yu Luo, Timothy M. Smith, Jacob M. Jungers, Ming Yang, Wei-Qiang Chen. “Restoring Abandoned Farmland to Mitigate Climate Change on a Full Earth”. One Earth 3, no. 2 (August 2020): 176–86. https://doi.org/10.1016/j.oneear.2020.07.019. 7, 8, 9. Bush Heritage Australia,“Monjebup Nature Reserves (WA),” Accessed 8 September 2021, https://www.bushheritage.org.au/places-we-protect/western-australia/monjebup . 10. Garnett, Stephen T., Neil D. Burgess, Julia E. Fa, Álvaro Fernández-Llamazares, Zsolt Molnár, Cathy J. Robinson, James E. M. Watson, Kerstin K.Zander, Beau Austin, Eduardo S. Brondizio, Neil French Collier, Tom Duncan, Erle Ellis, Hayley Geyle, Micha V. Jackson, Harry Jonas, Pernilla Malmer, Ben McGowan, Amphone Sivongxay, Ian Leiper. “A Spatial Overview of the Global Importance of Indigenous Lands for Conservation‘. Nature Sustainability 1, no. 7 (July 2018): 369–74. https://doi.org/10.1038/s41893-018-0100-6 . 11. Ogar, Edwin, Gretta Pecl, and Tero Mustonen. ‘Science Must Embrace Traditional and Indigenous Knowledge to Solve Our Biodiversity Crisis’. One Earth 3, no. 2 (August 2020): 162–65. https://doi.org/10.1016/j.oneear.2020.07.006. 12, 13, 14, 15. United Nations Environment Programme and the Food and Agriculture Organization of the United Nations, “About the UN Decade,” Accessed 8 September 2021, http://www.decadeonrestoration.org/about-un-decade . 16. United Nations Environment Management Group, “The UN Sustainable Development Goals – UN Environment Management Group”, Accessed 8 September 2021, https://unemg.org/our-work/supporting-the-sdgs/the-un-sustainable-development-goals/ .
- Building the Lightsaber | OmniSci Magazine
< Back to Issue 2 Building the Lightsaber Some of the most iconic movie gadgets are the oldest ones. For this issue we look at how the lightsaber was brought to life. by Manthila Ranatunga 10 December 2021 Edited by Sam Williams and Tanya Kovacevic Illustrated by Rohith S Prabhu Star Wars : A New Hope was a massive success when it hit cinemas back in 1977. It was a groundbreaking sensation in the field of science fiction movies and computer generated imagery (CGI) in films. What really caught many fans’ eyes was, of course, the lightsaber. Also referred to as a “laser sword”, it is described as “an elegant weapon, for a more civilised age”. Now in our civilised age, we have decided to replicate this dangerous weapon. Lightsabers have already been built by a few enthusiasts. For this piece, we will be focusing on Hacksmith Industries’ lightsaber build from 2020 , as it is the closest to the real deal. Fig. 1. “Hacksmith Industries’ latest lightsaber build”, Hacksmith Industries, 4000° PLASMA PROTO-LIGHTSABER BUILD, 2020. Hacksmith Industries was founded by James Hobson, an engineer who builds real-life versions of film and video game gadgets. After multiple attempts, the team managed to fabricate a retractable, plasma-based lightsaber. However, this is not a real lightsaber, but more-so a protosaber in the Star Wars universe. We will get back to this point later on. How do they work? Let us first talk about how lightsabers work in the movies. A lightsaber consists of three parts: the hilt, the Kyber crystal and the blade itself. Similar to a traditional sword, the hilt is the handle and is made of a durable metal such as aluminium. It contains the Kyber crystal, which is a rare crystal found in the Star Wars universe and is the power source of the lightsaber. Moving onto the more interesting part, the blade is a beam of plasma. Often called “the fourth state of matter”, it is created by heating gas up to temperatures as high as 2,500 degrees celsius. A battery inside the hilt activates the crystal. The produced plasma is then focused through a lens and directed outwards. An electromagnetic field, essentially a force field, generated at the hilt contains the plasma in a defined beam and directs it back into the hilt. The crystal absorbs the energy and recycles it. Hence lightsabers are extremely energy-efficient, allowing Jedi Knights to use them for their whole lifetimes. Fig. 2. Robert W. Schönholz, Blue Lightsaber, c.2016. Of course, the lightsaber breaks the laws of physics. Electromagnetic fields do not work as they do on fictional planets like Coruscant. Energy-dense power sources such as Kyber crystals do not exist in real life, which leads us to the protosaber. In Star Wars lore, a protosaber is a lightsaber with an external power source. It was the predecessor to the lightsaber when Kyber crystals could not be contained inside the hilt. Since real-life high energy sources cannot be squished into the hilt, Hacksmith Industries' lightsaber build is reminiscent of the early protosaber. The build The engineers at Hacksmith Industries settled on liquefied petroleum gas (LPG) as the power source, the same gas used for home heating systems and barbecues. This gas is fed through the brass and copper hilt, and is burnt continuously to keep producing plasma. To form the beam shape of the blade, they incorporated laminar flow of gas. Ever seen videos of “frozen” water coming out of taps like this ? Laminar flow occurs when layers of fluid molecules, in this case LPG, flow without mixing. In this instance, a smooth beam is created. Unlike actual lightsabers, the beam does not return to the hilt to be absorbed. Of course, to be a lightsaber, it has to function like one, too. The plasma is extremely hot, reaching up to 2,200 degrees celsius. Therefore, it can cut through metal and other objects much like we see in the movies. This also means contact with the blade can lead to serious or even fatal injuries. The external power supply is in the form of a backpack, with mounted LPG canisters and electronics for assistance. Overall, the build looks, feels and works like a real lightsaber, which makes it a pretty accurate replica. However, we do not have the Force or ancient Jedi wisdom, so there are some notable imperfections in the design. Fig. 3. “Finished lightsaber build”, Hacksmith Industries, 4000° PLASMA PROTO-LIGHTSABER BUILD, 2020. Colours Lightsabers come in a variety of colours, each reflecting the wielder's moral values in Star Wars canon. Blue, for example, represents justice and protection. Green, blue and red are the most commonly seen in the movies, but lightsabers also come in purple, orange, yellow, white and black. If you did high school science, you may remember mixing bunsen burner flames with salts to produce colours. The same principle applies here; salts can be mixed in with plasma to colour the blade. For example, Strontium Chloride gives a red colour, so you can finally live out your Sith fantasies. Fig. 4. “Lightsaber colours by mixing salts”, Hacksmith Industries, 4000° PLASMA PROTO-LIGHTSABER BUILD, 2020. Improvements The downside of using plasma is that we cannot fight with it. Blades would pass right through each other without clashing. To fix this, a metal rod that can withstand high temperatures, such as Tungsten, could form the blade with a beam of plasma around it. However, this means the lightsaber would not be retractable, which defeats the purpose. To keep the blade coloured, salts have to be continuously fed through the hilt. This can be done with another pressurised canister along with the LPG, although it requires extra space. Despite the imperfections, the protosaber by Hacksmith Industries is the closest prototype to a real-life lightsaber. With constantly evolving technology, we will be able to build a more compact model that more closely resembles those in the movies. Makers all around the world are building cool movie gadgets like the lightsaber, so keep a lookout for your favourite ones. You never know what the nerds may bring! References 1. Amy Tikkanen, “Star Wars”, Britannica, published April 10, 2008, https://www.britannica.com/topic/Star-Wars-film-series. 2, 4, 7. Hacksmith Industries, “4000° PLASMA PROTO-LIGHTSABER BUILD (RETRACTABLE BLADE!)”, October 2020, YouTube video, 18:15, https://www.youtube.com/watch?v=xC6J4T_hUKg. 3. Joshua Sostrin, “Keeping it real with the Hacksmith”, YouTube Official Blog (blog), November 12, 2020, https://blog.youtube/creator-and-artist-stories/the-hacksmith-10-million-subscribers/. 5. Daniel Kolitz, “Are Lightsabers Theoretically Possible?”, Gizmodo, published August 10, 2021, https://www.gizmodo.com.au/2021/08/are-lightsabers-theoretically-possible/. 6. Richard Rogers, “Lightsaber Battery Analysis”, Arbin Instruments: News, published October 3, 2019, https://www.arbin.com/lightsaber-battery-analysis/. 8. Phil Edwards, “Star Wars lightsaber colors, explained”, Vox, published May 4, 2015, https://www.vox.com/2015/5/31/8689811/lightsaber-colors-star-wars. Previous article back to DISORDER Next article
- Making sense of the senses: The 2021 Nobel Prize in Physiology or Medicine | OmniSci Magazine
< Back to Issue 2 Making sense of the senses: The 2021 Nobel Prize in Physiology or Medicine What do spicy food, menthol lozenges and walking around blindfolded have in common? They all activate protein receptors discovered by Professors David Julius and Ardem Patapoutian, the winners of the 2021 Nobel Prize in Physiology or Medicine. by Dominika Pasztetnik 10 December 2021 Edited by Breana Galea & Juulke Castelijn Illustrated by Casey Boswell Stimuli are changes to our environment, such as heat, cold and touch, that we recognise through our senses. We are all constantly bombarded with thousands of these stimuli from our surroundings. Despite this disorder, we are somehow able to perceive and make sense of the world. The protein receptors discovered by Professors Julius and Patapoutian make this possible. Located at the surface of the nerve cell, these receptors convert an external stimulus to an electrical signal. This signal then travels along nerve cells to the brain, allowing us to sense the stimulus. Based in California, Julius and Patapoutian are scientists in the fields of neuroscience and molecular biology. The main interest of their work has been identifying and understanding the protein receptors involved in detecting stimuli. For Julius, his major focus has been to identify the receptors involved in the sensation of pain (1). For Patapoutian, it has been to identify the protein receptors involved in detecting mechanical stimuli, such as touch (2). For their past 25 years of research, Julius and Patapoutian were awarded the Nobel Prize in Physiology or Medicine in October 2021. The Nobel Prize was founded by Alfred Nobel, a Swedish scientist also famous for inventing dynamite. Prior to his death in 1896, Nobel allocated most of his money to the first Nobel Prizes. Since 1901, the Nobel Prize has been annually bestowed on those who, in Nobel’s words, have “conferred the greatest benefit to mankind” in different fields (3). Notable past laureates of the Nobel Prize in Physiology or Medicine include Sir Alexander Fleming, Sir Ernst Chain and the Australian Howard Florey. They were awarded in 1945 for their discovery of the antibiotic penicillin (4). Sir Hans Krebs received the Nobel Prize in 1953 for his discovery of the citric acid cycle (5). Also known as the Krebs cycle, it is a series of reactions used to produce energy in our cells. TRPV1: spice it up It’s a rather chilly morning. You eye the packet of Shin Ramyun that’s been sitting in your pantry for weeks. Without a second thought, you prepare the noodles, adding all the soup powder. After a few mouthfuls, your eyes start streaming and your face matches the scarlet red of the now-empty packaging. The culprit is capsaicin, a substance in the chilli flakes added to the soup powder. It binds to a protein receptor embedded at the surface of the nerve cells in your mouth. Julius discovered this receptor in 1997, and called it TRPV1, which stands for transient receptor potential vanilloid type 1 (6). TRPV1 is a channel with a gate at either end that is usually closed (Figure 1, blue) (7). Capsaicin opens these gates, allowing ions, such as calcium, to move through TRPV1 and into the nerve cell (Figure 1, red). The nerve cell then signals to the brain, causing you to feel the searing heat in your mouth. TRPV1 is also found in your skin and can be activated by temperatures above 40°C, such as when you accidentally touch the kettle full of boiling water for your noodles (8). Figure 1. TRPV1 at the surface of a nerve cell. In the absence of capsaicin or at cool temperatures, TRPV1 is closed (blue). In the presence of capsaicin or at higher temperatures, TRPV1 opens, allowing ions to flow into the nerve cell (red). TRPM8: too cool for school On your way to uni, you notice your throat’s a bit sore from going overboard with karaoke the night before, so you pop a lozenge into your mouth. The soothing, cool sensation is thanks to menthol. It is a compound that binds to TRPM8, which stands for transient receptor potential melastatin 8. It is another receptor found on the nerve cells in your tongue, as well as on your skin (9). TRPM8 was separately discovered in 2002 by both Julius and Patapoutian (10). Like TRPV1, TRPM8 is a protein channel that is usually closed. In response to menthol or cool temperatures from 26 down to 8°C, TRPM8 opens and allows ions to enter the nerve cell, which then signals the cold sensation to your brain (11). PIEZO: peer pressure During your lunch break at uni, you and your mates decide to play blindfolded tag. Because, as we all know, that's what uni students do in their free time. In the first round, you have the misfortune of being chosen as ‘it’. Blindfolded, you walk around with your hands in front of you, trying to find your mates. Despite not being able to see anything, you can still walk and wave your arms and roughly know where your arms and legs are in space. This is due to a sense called proprioception. You lunge forward and nearly grab someone, only to feel their jacket brush your fingers. Both proprioception and the detection of light touch, such as of the jacket brushing your fingers, are made possible by another class of protein receptors called PIEZO2. Discovered by Patapoutian in 2010, its name comes from piesi, the Greek word for pressure (12). Like TRPV1 and TRPM8, PIEZO2 is an ion channel at the nerve cell surface. However, the structure of PIEZO2 is nothing like that of TRPV1 and TRPM8. PIEZO2 has three protruding blades, which form a dent, called a nano-bowl, in the outer surface of the cell (13). When the outside of the cell is prodded, the blades straighten and the nano-bowl flattens. This allows the channel in the centre of the PIEZO2 to open, so ions can flow into the nerve cell (Figure 2). The nerve cell then sends an electrical impulse to the brain, letting you know you’re failing at blindfolded tag. Figure 2. PIEZO at the surface of a nerve cell. When force is applied to the surface of the nerve cell, the PIEZO channel opens, allowing ions to move into the cell. Apart from being essential for playing blindfolded tag, PIEZO2 is also important in various other aspects of the human body’s functioning we often take for granted. For example, PIEZO2 prevents you from breathing in too much air (14). It is also present on the cells lining your digestive tract. PIEZO2 detects pressure exerted onto these cells by food, causing the cells to release hormones that help with digestion (15). Furthermore, PIEZO2 helps monitor the fullness of your bladder, saving you from embarrassment (16). If there is a PIEZO2, what about PIEZO1? Although it has a similar structure to PIEZO2, PIEZO1’s role is quite different. PIEZO1 handles the background maintenance required to keep your body healthy. This includes bone formation (17) and preventing your red blood cells from bursting (18). People with a particular mutated form of PIEZO1 have a reduced risk of getting malaria (19). Patapoutian found that this mutation causes red blood cells to shrivel, preventing the malaria parasite from infecting them. Many people living in malaria-affected areas, such as Africa, have this mutation. Therefore, knowledge regarding these receptors is improving our understanding of related diseases. Drug development Researchers are currently using information about the receptors discovered by Julius and Patapoutian to develop new drugs to treat various conditions. Knowing the identities and structures of these receptors is helping researchers design compounds that bind to them, either blocking or activating them. In this way, Julius and Patapoutian’s work is helping provide a “benefit to mankind”. For example, during a migraine, the TRPV1 channel opens more frequently in the nerve cells of the meninges, the envelope surrounding the brain (20). These nerve cells contain more TRPV1 at their surfaces. This causes the nerve cells to send more electrical signals to the brain and so increases the sensation of pain. Using a drug to block the TRPV1 receptor could reduce the number of these electrical impulses and lessen the pain associated with migraines. It’s been a busy day activating all these receptors, which, as it turns out, are part of your daily life as a uni student. So next time you eat chilli flakes, have a menthol lozenge or play blindfolded tag, you will know which tiny sensors to hold responsible for your pleasant — or unpleasant — experiences. Further reading Press release: The Nobel Prize in Physiology or Medicine 2021 The Nobel Prize in Physiology or Medicine 2021 - Advanced Information References: University of California San Francisco. “Biography of David Julius.” UCSF. Accessed November 10, 2021. https://www.ucsf.edu/news/2021/09/421486/biography-david-julius. Nobel Prize Outreach AB 2021. “Press release: The Nobel Prize in Physiology or Medicine 2021.” The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/prizes/medicine/2021/press-release/. Nobel Prize Outreach AB 2021. "Alfred Nobel’s will." The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/alfred-nobel/alfred-nobels-will/. Nobel Prize Outreach AB 2021. “The Nobel Prize in Physiology or Medicine 1945.” The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/prizes/medicine/1945/summary/ Nobel Prize Outreach AB 2021. “The Nobel Prize in Physiology or Medicine 1953.” The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/prizes/medicine/1953/summary/ Ernfors, Patrik, Abdel El Manira, and Per Svenningsson. "Advanced information." The Nobel Prize. Accessed November 10, 2021. https://www.nobelprize.org/prizes/medicine/2021/advanced-information/. Liao, M., E. Cao, D. Julius, and Y. Cheng. "Structure of the Trpv1 Ion Channel Determined by Electron Cryo-Microscopy." Nature 504, no. 7478 (Dec 5 2013): 107-12. doi: 10.1038/nature12822. Ernfors et al., “Advanced information.” McKemy, D. D. "Trpm8: The Cold and Menthol Receptor." In Trp Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, edited by W. B. Liedtke and S. Heller. Frontiers in Neuroscience. Boca Raton (FL), 2007. Ernfors et al., “Advanced information.” McKemy, Trp Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. Coste, B., J. Mathur, M. Schmidt, T. J. Earley, S. Ranade, M. J. Petrus, A. E. Dubin, and A. Patapoutian. "Piezo1 and Piezo2 Are Essential Components of Distinct Mechanically Activated Cation Channels." Science 330, no. 6000 (Oct 1 2010): 55-60. doi: 10.1126/science.1193270. Jiang, Y., X. Yang, J. Jiang, and B. Xiao. "Structural Designs and Mechanogating Mechanisms of the Mechanosensitive Piezo Channels." Trends in Biochemical Sciences 46, no. 6 (Jun 2021): 472-88. doi: 10.1016/j.tibs.2021.01.008. Nonomura, K., S. H. Woo, R. B. Chang, A. Gillich, Z. Qiu, A. G. Francisco, S. S. Ranade, S. D. Liberles, and A. Patapoutian. "Piezo2 Senses Airway Stretch and Mediates Lung Inflation-Induced Apnoea." Nature 541, no. 7636 (Jan 12 2017): 176-81. doi: 10.1038/nature20793. Alcaino, C., K. R. Knutson, A. J. Treichel, G. Yildiz, P. R. Strege, D. R. Linden, J. H. Li, et al. "A Population of Gut Epithelial Enterochromaffin Cells Is Mechanosensitive and Requires Piezo2 to Convert Force into Serotonin Release." Proceedings of the National Academy of Sciences of the United States of America 115, no. 32 (Aug 7 2018): E7632-E41. doi: 10.1073/pnas.1804938115. Marshall, K. L., D. Saade, N. Ghitani, A. M. Coombs, M. Szczot, J. Keller, T. Ogata, et al. "Piezo2 in Sensory Neurons and Urothelial Cells Coordinates Urination." Nature 588, no. 7837 (Dec 2020): 290-95. doi: 10.1038/s41586-020-2830-7. Li, X., L. Han, I. Nookaew, E. Mannen, M. J. Silva, M. Almeida, and J. Xiong. "Stimulation of Piezo1 by Mechanical Signals Promotes Bone Anabolism." Elife 8 (Oct 7 2019). doi: 10.7554/eLife.49631. Cahalan, S. M., V. Lukacs, S. S. Ranade, S. Chien, M. Bandell, and A. Patapoutian. "Piezo1 Links Mechanical Forces to Red Blood Cell Volume." Elife 4 (May 22 2015). doi: 10.7554/eLife.07370. Ma, S., S. Cahalan, G. LaMonte, N. D. Grubaugh, W. Zeng, S. E. Murthy, E. Paytas, et al. "Common Piezo1 Allele in African Populations Causes Rbc Dehydration and Attenuates Plasmodium Infection." Cell 173, no. 2 (Apr 5 2018): 443-55 e12. doi: 10.1016/j.cell.2018.02.047. Dux, M., J. Rosta, and K. Messlinger. "Trp Channels in the Focus of Trigeminal Nociceptor Sensitization Contributing to Primary Headaches." International Journal of Molecular Sciences 21, no. 1 (Jan 4 2020). doi: 10.3390/ijms21010342. Previous article back to DISORDER Next article
- Research - Is it For Me? | OmniSci Magazine
Humans of UniMelb Research - Is it For Me? By Renee Papaluca Thinking about completing your Honours year or a PhD at UniMelb? This column has some advice for you, courtesy of current research students. Edited by Ruby Dempsey & Sam Williams Issue 1: September 24, 2021 Illustration by Gemma Van der Hurk Science is everywhere, but how can we contribute to furthering our knowledge of science? I caught up with some current research students to learn more about the Honours-PhD pathway and their experience studying science at the University of Melbourne. Caitlin Kane Caitlin is a current Honours student at the Royal Melbourne Hospital. In her spare time, she likes to go on bike rides and read. What was the ‘lightbulb moment’ that prompted you to study science? “When I was five, I had all these books that covered basic topics like the human body and the ocean. I thought they were wild! I was just a really curious kid that loved learning things and being certain about things. For me, science was an approach to learning and understanding the world that [was] very investigative. I guess I was just curious about a lot of things and science just took that curiosity and said, ‘now you can do anything with it’". Why did you choose to study Honours? “Honours, at least for me, is a clarifying year.” “Doing a bachelor’s degree in science doesn’t [necessarily] make you a scientist … A lot of the skills you need as a scientist are practical ones; depending on your area [of study] ... Those skills are very different from what you actually learn in university.” “I wasn’t sure what I wanted to do with my degree as there are a lot of options, like doing a PhD or ... going into the workforce… I thought that Honours would really help me clarify what kinds of science I like and give me time to figure out what I wanted to do next.” What’s involved in your research? “There are many variants of HPV (human papillomavirus) circulating in Australia - some of those variants cause cancer, and some are covered by vaccination. To understand how well vaccination is working in Australia, I test for HPV in patient samples, note the patient’s vaccination status, and examine the data to see which HPV variants are prevalent right now. This involves lab skills like pipetting, running polymerase chain reactions (PCRs) and extracting DNA. When I say ‘I’ do all these steps, it’s really like 10 people ... There are a lot of different people who do different parts of the project to keep it running.” What advice would you give to prospective Honours students? “Be informed of your options, don’t be scared of talking to supervisors, and talk to older students. Everytime I would ask an older student … [’what do you wish you would have known?’] they would come out with killer advice. That’s the only trick!” “The best piece of advice I got was that ‘some supervisors only want an extra set of hands’… They just want the work to be done and that is not the kind of supervisor you want.” Alex Ritter Alex is currently completing his 2nd PhD year in the Department of Physics. In his spare time, he enjoys singing in choirs, doing crosswords, and doting over his housemate’s cat. What was the ‘lightbulb moment’ that prompted you to study science? “Going through school, there are always those things you [tend to] gravitate towards...I really liked maths and science... and wanted to do something to do with them. In high school, I also had some opportunities to do extension physics… [which] really got me interested [in tertiary study]... Luckily, it's still something I enjoy so it was the right choice.” Why did you choose to continue to a PhD following your Masters? “I did Masters of Science in Physics straight after undergrad. I really enjoyed it! I loved … really getting into the graduate subjects; diving into more detail” “[The thing] I found the most challenging was the transition into research and that whole different style of thinking. My experience was that your first year is still coursework and learning high level topics and your second year is largely research. So, I found in second year - especially towards the end - finishing the thesis was quite challenging but ultimately rewarding” What are you currently researching? “My general area of research is theoretical particle physics. This describes the tiny, subatomic particles that make us up. So, we look at electrons, inside neutrons and all the forces that hold them together. I work in dark matter ... It doesn’t give off light but it interacts gravitationally. My research generally is introducing new sub-atomic particles and forces to try and explain what dark matter might be.” Can you have a life outside of your PhD? “The thing with a PhD and research, especially in physics, is that you set your own schedule which has its pros and cons. During the pandemic, I found it difficult to keep myself motivated whilst being stuck inside all day. Due to the flexibility, it really depends on how you want to approach your PhD. I still wanted to have a life outside of my PhD. I don’t wake up and think about my PhD 24/7! I still do a fair bit of choral singing as a hobby.” “My advice is that you can balance things in a PhD but it comes down to what your personality is like and how well you can set boundaries. For example, are you someone who gets absolutely absorbed in tasks and spends hours on them? Do you overwork yourself or do you underwork yourself? How good are you at time management? I think the best thing to do is to be self-aware about how you are as a worker and researcher before you get started.” What advice would you give to prospective Masters or PhD students? “Be honest with yourself and be honest with your supervisor. Know who you are and know what your limits are and try to build everything around that.” “I think the hardest part for me was knowing what to do at the start of the process. There isn’t a lot of information [available]... In terms of picking a supervisor, I think the best advice is to try and chat to them as honestly as you can about the things they do and what kinds of students they like.. For example, try and see how busy your supervisor is. Sometimes, a supervisor can be great, their research is great and can be super interesting... But, often they’ll be in high demand with very little time … to be a hands-on supervisor. I think also trying to get an understanding of what the working relationship will be like is also important.”
- Mighty Microscopic Warriors!
< Back to Issue 3 Mighty Microscopic Warriors! By Gaurika Loomba 10 September 2022 Edited by Niesha Baker and Khoa-Anh Tran Illustrated by Rachel Ko Next It’s a fine Saturday afternoon. You’re sitting in your backyard sipping on coffee and losing your mind over the daily Wordle. While you’re so engrossed, an unusual, blue-colored creature pulls another chair and solves the Wordle for you. Just as you look up and try to process the condescending smirk of this creature, your daily news notification pops up. It's true! The whole world has been invaded by aliens! Thankfully this is a figment of our imagination, but would you believe me if I told you that alien invasions are constantly happening unnoticed in the microscopic world of our bodies? Every day, our cells face new ‘alien invasions’, thanks to unhygienic eating, or even just from breathing! In the external world, such an invasion would unsettle the entire human population and adversely impact the lives of everyone. It’s amazing how such invasions inside our bodies are usually defeated daily. So who are these tiny ‘soldiers’ that fight them off, silently and efficiently? It’s time to introduce the two brothers of our story– the innate immune cells system and the adaptive immune cells system, the former being the more enthusiastic and energetic one, while the latter is calmer and wiser. Although different in nature, the two systems coordinate efficiently to eliminate our enemies and help us go on about our lives. The innate immune system acts first when a pathogen (a disease-causing microorganism) manages to enter our bodies by getting around our physical barriers like the skin, and the mucus in the respiratory, gastric, urinary, and sexual tracts, etc. The innate immune system consists of cells like macrophages and dendritic cells (DCs), which are constantly looking out for incoming invaders. These cells recognise pathogens through common foreign attributes that our native cells don’t possess. In order to defend us from the harmful effects of the pathogen, our innate cells engulf them. In fact, the word ‘macrophages’ literally means ‘big eaters.’ Inside our cells, the pathogens’ end is inevitable, smashed and broken into pieces, which are mounted on our soldier cells’ surfaces, informing other soldier cells that an invasion has occurred. Exposing broken parts of the pathogen on our innate cells’ surfaces also produces chemicals called cytokines that help recruit more of our soldier cells to the site of invasion. So, when we get flu, the secreted cytokines is why we run a fever, cough, sneeze, and influx of our soldier cells to the throat area is why we may have swelling around there. Similarly, if we bruise, our blood vessels dilate to allow entry of our soldier cells to the wounded area, which is then manifested as redness and swelling around it. Fortunately, this means of communication of our soldier cells is much faster than our internet connection and so the whole process occurs in a matter of hours. On most days, the keen innate immune system is enough to control an invasion. However, it needs big brotherly advice from the adaptive immune system in case things get out of hand. The main players of this part of the immune system are the calm B- and T-cells. These can be found resting in the lymph nodes, unaware of the invasion in the body. The B- and T-cells are wise soldiers, which is evident in the way they respond to an invasion. Each of these cells has molecules called ‘receptors’, which uniquely recognise pathogen parts presented to them. These receptors, on an adaptive cell, can be thought of as padlocks and the broken pathogen parts, mounted on an innate cell, as a key. In the lymph nodes, each resting B- and T-cell has a different type of padlock, unique for a different key. It is the job of a DC, with a broken pathogen part mounted on its surface, to enter the lymph nodes and search for the most accurate match for its key, from the variety of B- and T-cell padlocks. The key varies based on the different types of pathogens that invade our bodies. Once the perfect match is found, that specific B- and T-cell is activated and rapidly multiplied. This lock-and-key method of activation of adaptive cells confers the specificity of their action. These activated cells move from the lymph nodes to the site of infection and perform different functions that halt the pathogen from spreading the disease, by either killing the pathogen or stopping its reproduction. At the site of infection, innate cells, with the key (broken pathogen part) mounted on their surface wait for the brotherly advice, the incoming adaptive cells with the perfect match to the key. The activated T-cells uniquely interact with macrophages and signal them to start killing the pathogens that they have engulfed. This helps with clearance of the pathogen. Although B-cells are part of the adaptive immune system, they can also recognise the foreign pathogen products, break them down, and present these parts on their surface, just like the innate immune cells. So now B-cells also have a key to the activated T-cell padlocks. Their lock-and-key interaction facilitates the B-cells to release antibodies. Finally, the antibodies, together with the macrophages and DCs, as well as the B- and T-cells of the adaptive immune system, successfully win the war and die peacefully, having completed their purpose. But a small portion of B- and T-cells go on and develop into long-lived memory cells. Over the span of our lives, we are infected and reinfected with pathogens all the time, however not every encounter results in us falling sick. The credit goes to the B- and T-memory cells and their ability to remember the foreign attributes of the pathogen and kill it as soon as it re-invades. Adaptive cells’ memory is the principle of vaccination. An inactive pathogen or a part of the pathogen is introduced into the body. This trains our soldier cells for a real pathogen invasion by triggering the B-cells to form memory and specialised antibodies against the pseudo-pathogen. If the real pathogen infects us again, these pre-formed antibodies make fighting the war much easier and quicker. Correct training of immune cells is essential since a pathogen invasion is a life-or-death situation for us. Any mistakes by our soldier cells can have devastating effects. For example, an important part of the training process is to ensure the immune cells aptly distinguish between civilian cells and foreign cells. This education occurs in the bone marrow. Here, any B- or T-cells that attack civilian cells or cell parts are evicted from the training process so only the most eligible soldier cells continue to become eligible soldiers. (1) But even after a rigorous selection process, things can go wrong with our immune system. Instead of being our defending heroes, they turn their back against us and start identifying civilian cells as aliens and attacking them. Sadly, this is the reality for 5% of the Australian population, with a majority being women. This condition, when the immune cells stop distinguishing internal cells from alien cells, is called an auto-immune disorder. The cause for this disorder is mostly unknown, with some speculations of it being genetic or environmental. The repercussions can be mild, such as causing dry mouth and dry eyes - symptoms for Sjogren’s syndrome, or more severe such as joint pain and immobilisation, known as Rheumatoid Arthritis. These diseases are currently life-long and incurable because they involve our own cells fighting the healthy cells in our body. (2) Nevertheless, the immune system plays a very important role in helping us lead normal lives. It fights the battle against the invaders daily, without us realizing it. Thanks to the soldiers of the immune system, our daily activities, like solving a Wordle on a relaxing Saturday, are not hindered by an alien cell invasion in our bodies! References Kenneth Murphy, Casey Weaver. Basic concepts in Immunology. Janeway’s Immunobiology. 9th ed. United States: Garland Science Taylor and Francis; 2017. p. 4-11 Overview of autoimmune diseases [Internet]. Healthdirect. Available from: Overview of autoimmune diseases | healthdirect Previous article Next article alien back to
- Meet OmniSci Designer Aisyah Mohammad Sulhanuddin | OmniSci Magazine
Meet OmniSci Designer & Committee Member Aisyah Mohammad Sulhanuddin Aisyah is a designer and Events Officer at OmniSci in her final year of a Bachelor of Science in geography. For Issue 4: Mirage, she is contributing to social media and as an illustrator interviewed by Caitlin Kane What are you studying? I am studying the Bachelor of Science in geography, now in my final year. Do you have any advice for younger students? It’s alright to not know what you’re doing. But on the flipside, if you do feel you know what you’re doing, be very aware that could change in the next few years. Always be open to new options. What first got you interested in science? When I was a kid, my parents encouraged me to ask questions about the world. I also had my own little book of inventions… if there was a problem somewhere, even if it was with the most outlandish invention, I would seek a way to solve that problem. That idea of being able to figure out how the world works is very fascinating to me. How did you get involved with OmniSci? During lockdown, I saw on the bulletin an expression of interest for a new magazine. I’d just entered uni, wanted to try everything and thought why not, it seems like such a great opportunity. And it is! What is your role at OmniSci? I’ve done a lot of graphic design and I’m going to return for this issue in that role. I’ve basically collaborated with writers to make art that looks good, goes with my style and can convey what they want to say in their article. I’m also in the committee for OmniSci, and have been since last year. Within that, I’ve put multiple hats on: I’ve enjoyed organising multiple events for the club, and helping out with social media. Social events have had a great turnout this year, which is awesome. A new year is always a new opportunity for more people to learn about the magazine. What is your favourite thing about contributing at OmniSci so far? I’ve really enjoyed the graphics side of things. I love creating and it’s really awesome to be able to put art to something text-based. It’s interpretation… You’re bound by what the article says and what the science says, but there is freedom within to express something. I definitely enjoy being able to put my creativity into promotion [as a committee member]. Doing it in a way that’s aesthetically pleasing—it matters to me when things look nice! Do you have any advice for people thinking of getting involved, especially more on the committee side? Yes—do it! Come and join… If you’re interested, feel free to come along because no role should be too daunting for you, and there is always opportunity to make the role fit how you want, it’s quite flexible. Can you give us a sneak peak of what you're working on this issue? If there’s a lot to come, maybe you can just tell us where you’re up to in the process. I’ll be working on the design and looking forward to collaborating with the writer as to how to convey their article properly. In the future, I’m looking forward to being able to create more content for OmniSci—really looking forward to that. What do you like doing in your spare time (when you're not contributing at OmniSci)? A range of things—I like to read, edit photos, do graphic design of random illustrations. I also crochet, do a bit of arts and crafts on the side, and take a whole lot of photos. Which chemical element would you name your firstborn child (or pet) after? Wait, let me pull up the periodic table! Let’s see… Neon. Feels like a great name for a child or an animal. Like calling your kid Jaz or Jet. It’s very snazzy! Do you have anything else you’d like to share with the OmniSci community? Stay looking on our Facebook page! Keep in touch and always keep on communicating, consuming and learning more about science, because that’s how the world progresses honestly. See Aisyah's designs Should We Protect Our Genetic Information? The Rise of The Planet of AI Maxing the Vax: why some countries are losing the COVID vaccination race What’s the forecast for smallholder farmers of Arabica coffee? The Ethics of Space Travel Space exploration in Antarctica The Mirage of Camouflage FINAL Big Bang to Black Holes: Illusionary Nature of Time
- ISSUES | OmniSci Magazine
Issues Check out previous issues of OmniSci Magazine! Issue 7: Apex Cover: Ingrid Sefton 22 October, 2024 READ NOW Issue 6: Elemental Cover: Louise Cen 28 May, 2024 READ NOW Issue 5: Wicked Cover: Aisyah Mohammad Sulhanuddin 24 Oct, 2023 READ NOW ISSUE 4: MIRAGE Cover: Gemma van der Hurk 1 July, 2023 READ NOW ISSUE 3: ALIEN Cover: Ravon Chew September 10, 2022 READ NOW SUMMER ISSUE 2022: A Year In Science Cover: Quynh Anh Nguyen March 23, 2023 READ NOW ISSUE 2: DISORDER Cover: Janna Dingle December 10, 2021 READ NOW ISSUE 1: Science is Everywhere Cover: Cheryl Seah December 24, 2021 READ NOW
- On the Folklore of Fossils | OmniSci Magazine
< Back to Issue 5 On the Folklore of Fossils Ethan Bisogni 24 October 2023 Edited by Arwen Nguyen-Ngo Illustrated by Aisyah Mohammad Sulhanuddin We inhabit an incredible world, one shaped by the ancient mysteries of our past and the imaginative stories they inspire. Throughout human history, we have tried to comprehend the bigger picture - using mythology and science to explain the presence of any natural phenomena we can observe. Between the movement of the stars and shape of the land, most scientific explanations of our world share a fascinating mythical counterpart. One particular area of science that has been bestowed with some truly incredible folklore is palaeontology. A History of Palaeontology To best understand some of the amazing mythologies surrounding fossils, we should first briefly explore the history of modern palaeontology. Some of the earliest attempts at understanding fossils can be seen in ancient Greece and Rome, where philosophers such as Herodotus understood that the presence of petrified shells indicated the recession of a past marine environment (Forli & Guerrini, 2022a). However, much of the groundwork for modern palaeontology was only developed in the late 17th century (Boudreau et al., 2023). Regarded as one of the most influential figures in modern geology, Nicholas Steno had outlined the Principles of Stratigraphy in his 1669 Dissertationis Prodromus - to be used as a jumping board for many earth scientists to come (Berthault, 2022). In the early 1800’s, William Smith had utilised his fossil knowledge to differentiate and match layers of rock known as strata, published in Strata Identified by Organised Fossils (Scott, 2008). And perhaps one of the largest contributions to modern palaeontology, Darwin's theory of evolution outlined in On the Origin of Species allowed for natural scientists to better understand the evolution of species throughout time. Considering how much of what we know about modern palaeontology was only published in the last 350 years, it becomes clear why so many cultures had developed their own interesting interpretations of fossils. From magical spells to infernal beasts, these legends highlight the prominent ideologies of their time. So let us explore some of the more interesting and diverse fossil myths from the ages. Merlinia To start, we will be discussing the folklore origin of Merlinia, an extinct genus of trilobite from the Early Ordivician age, 470 million years ago (British Geological Survey, n.d.). Trilobites were small sea-faring invertebrates who first appeared following the Cambrian Explosion, and were prominent throughout the fossil record until their unfortunate extinction 250 million years ago during the Late Permian mass extinction (American Museum of Natural History, n.d.). According to the British Geological Survey, this genus of trilobite was extensively found throughout the rocks of Carmarthen - a Welsh town famous for being the supposed birthplace of Merlin, the legendary wizard and advisor to King Arthur (‘P550303’, 2009). Often mistaken by the townspeople as stone butterflies, these fossils were naturally attributed to Merlin and thought to be the product of a petrification spell (American Museum of Natural History, n.d.). Whilst disheartening for the butterflies, the real trilobites behind the myth likely faced a much more wicked and sorrowful demise. Snakestones Much like Merlinia, snakestones were also named after a prominent figure with a habit for turning creatures to stone. Saint Hilda of Whitby was the abbess of the local town monastery during the sixteen hundreds, and was widely credited for the creation of these fossils - which are otherwise known as Hildoceras, after herself (Lotzof, n.d.). With the town facing a plague of snakes, St Hilda was said to have performed a miracle that petrified the serpents and forced them to coil into the fossils we see today (National Museums Scotland, n.d.). These stony serpents however are really just ammonites, a group of molluscs that went extinct alongside the dinosaurs 66 million years ago (Osterloff, n.d.). The legend of St Hilda isn’t the only instance of snake-repellent folklore either, with St Patrick earning himself a holiday after supposedly clearing the snakes out of Ireland. Much of the rise of European anguine-based legends can be attributed to growing Christian influences during the second millennium. The biblical depiction of snakes as tempting and disingenuous has caused them to be portrayed harshly throughout older western media (Migdol, 2021). Unsurprisingly, this isn't the only time that palaeontology and Christianity have crossed paths. The Devil Perhaps the most infamous figure in human culture, the Devil is outlined in Christian doctrine as the embodiment of sin and evil. References to their influence can be found throughout human history, and have naturally found their way into geological folklore. Many geological features have been attributed to a satanic presence, thought to be remnants from when the Devil would walk the earth (Forli & Guerrini, 2022b). Gryphaea was a fossil widely mistaken as the authentic nails of Satan himself, hence nicknamed the ‘Devil’s Nails’, and was used as a proxy to determine areas of evil (Forli & Guerrini, 2022b). However, these fossils were not the byproduct of Satan’s occasional beauty treatments, but rather an extinct genus of mollusc from the early Jurassic, 200 million years ago (Forli & Guerrini, 2022b). Nail clippings were not the only features observed that people considered to be a sign of the Devil’s unholy pilgrimage. Devilish hoof-shaped steps embedded into stone have been reported throughout the world. Referred to as ‘il-passi tax-xitan’ by the Maltese, meaning ‘the devil's footsteps’, these tracks were considered further proof of the Devil's presence amongst mankind (Duffin & Davidson, 2011). In Malta these footprints were really just fossilised echinoids - innocent former sea urchins facing unkind accusations of being demonic (Duffin & Davidson, 2011). That's not to say all Maltese fossils were considered unholy: some 16th century priests conversely believed them to be the footsteps of St Paul the Apostle, following his shipwrecking on the island in the 1st century (Mayor & Sarjeant, 2001). Dragons Dragons are some of the most well known mythical creatures, with many cultures around the world having their own rendition of a mystic dragon-like beast. Unlike some of the other legends explored so far, it is unlikely that fossilised remains were the initial cause of this myth, but were rather used as evidence to cement it in truth. Dragons were considered prominent creatures throughout the Indian mountains, with evidence of dragon hunts being displayed in the ancient city of Paraka (Mayor, 2000). Apollonius of Tyana, a 1st century Greek philosopher, was said to have observed these dragons during his passage through the Siwalik Hills - an Indian range known for its preservation of larger fossils (Mayor, 2000). Described by Apollonius as considerable tusked creatures, these dragon remains were more than likely the fossils of extinct elephants and giraffids - such as Elephas hysudricus or Sivatherium giganteum (Mayor, 2000). India is not the only country to have experienced this phenomenon either, with many Asian and European societies said to have also continuously misdiagnose large vertebrate fossils as dragon bones. Whether it is mischievous spellcasting or the indication of a demonic evil, myths surrounding fossils have existed throughout centuries of human society. These legends provide a fascinating window into the creative minds of past cultures, and their beliefs at the time. While modern palaeontologists have proven these legends to be no more than captivating stories, it is important to view this folklore with a certain understanding and respect. These early attempts at trying to understand the world around us provides an interesting insight into human nature, and our innate desire to search for answers. References American Museum of Natural History. (n.d.) End of the Line - The demise of the Trilobites . American Museum of Natural History. https://www.amnh.org/research/paleontology/collections/fossil-invertebrate-collection/trilobite-website/trilobite-localities/end-of-the-line-the-demise-of-the-trilobites Berthault, G. (2002). Analysis of Main Principles of Stratigraphy on the Basis of Experimental Data . Lithology and Mineral Resources, 22(5), 442-446. https://doi.org/10.1023/A:1020220232661 Boudreau, D., McDaniel, M., Sprout, E., & Turgeon, A. (2023). Paleontology . National Geographic Society. https://education.nationalgeographic.org/resource/paleontology/ British Geological Survey (n.d.). Trilobites . https://www.bgs.ac.uk/discovering-geology/fossilsand-geological-time/trilobites/ Duffin, C. J., & Davidson, J. P. (2011). Geology and the dark side . Proceedings of the Geologists’ Association, 122(1), 7-15. https://doi.org/10.1016/j.pgeola.2010.08.002 Forli, M., & Guerrini, A. (2022). Bivalvia: Devil’s Nails, Reflections Between Superstition and Science. In The History of Fossils Over Centuries (pp. 181-206). Springer, Cham. https://doi.org/10.1007/978-3-031-04687-2_2 Forli, M., & Guerrini, A. (2022). Fossilia and Fossils: Considerations on Their Understanding Over the Centuries . In The History of Fossils Over Centuries (pp. 5-25). Springer, Cham. https://doi.org/10.1007/978-3-031-04687-2_12 Lotzof, K. (n.d.). Snakestones: The Myth, Magic, and Science of Ammonites . Natural History Museum. https://www.nhm.ac.uk/discover/snakestones-ammonites-myth-magic-science.html Mayor, A. (2000). CHAPTER 3 Ancient Discoveries of Giant Bones . In The First Fossil Hunters (pp. 104-156). Princeton University Press. https://www.jstor.org/stable/j.ctt7s6mm.11 Mayor, A., & Sarjeant, W.A.S. (2001). The Folklore of Footprints in Stone: From Classical Antiquity to the Present . An International Journal for Plant and Animal Traces, 8(2), 143-163. https://www.jstor.org/stable/j.ctt7s6mm.11 Migdol, E., Morrison, E., & Grollemond, L. (2021). What Did People Believe about Animals in the Middle Ages? Getty Conservation Institute. https://www.getty.edu/news/what-did-people-believe-about-animals-in-the-middle-ages/ National Museums Scotland (n.d.). Snakestones . https://www.nms.ac.uk/explore-our- collections/stories/natural-sciences/fossil-tales/fossil-tales-menu/snakestones/ Osterloff, E. (n.d.). What Is an Ammonite? Natural History Museum. https://www.nhm.ac.uk/discover/what-is-an-ammonite.html P550303. (2009). British Geological Survey . http://geoscenic.bgs.ac.uk/asset- bank/action/viewAsset?id=113713&index=4&total=6&view=viewSearchItem Scott, M. (2008). William Smith (1769-1839) . NASA Earth Observatory. https://earthobservatory.nasa.gov/features/WilliamSmith Wicked back to
- Fossil Markets: Under the Gavel, Under Scrutiny | OmniSci Magazine
< Back to Issue 7 Fossil Markets: Under the Gavel, Under Scrutiny by Jesse Allen 22 October 2024 edited by Zeinab Jishi illustrated by Jessica Walton At the crossroads between science and commerce, the trade in fossils has "developed into an organised enterprise" over the course of the twentieth century. With greater investment and heated competition between museums and private collectors, fossils increasingly took their place alongside “art, furniture, and fine wine” (Kjærgaard, 2012, pp.340-344). Fast forward to the twenty-first century, and this trend shows no signs of abating. On the contrary: as of 10 July 2024, a near-complete stegosaurus skeleton - nicknamed ‘Apex’ - was discovered by a commercial palaeontologist in Colorado, and was later purchased by “hedge-fund billionaire” Ken Griffin for US$44.6 million (Paul, 2024). This makes it the single most expensive dinosaur skeleton ever sold, eclipsing the previous record set in 2020 for a T-Rex named ‘Stan’, who was snapped up for US$31.8 million (Paul, 2024). These sales came with their fair share of criticism and controversy, reigniting the long-standing debate about how fossils should be handled, and where these ancient remains rightfully belong. Fossils (from the Latin fossilus , meaning ‘unearthed’) are the “preserved remains of plants and animals” which have been buried in sediments or preserved underneath ancient bodies of water, and offer unique insights into the history and adaptive evolution of life on Earth (British Geological Survey, n.d.). Their value is by no means limited to biology, however: they are useful for geologists in correlating the age of different rock layers (British Geological Survey, n.d.), and reveal the nature and consequences of changes in Earth’s climate (National Park Service, n.d.). Though new discoveries are being made all the time, fossils are inherently a finite resource, which cannot be replaced. This is part of what makes the fossil trade so lucrative, but the forces of limited supply and high demand have also led to the emergence of a dark underbelly. Cases of fossil forgery go back “as far as the dawn of palaeontology itself” in the late 18th and 19th centuries (Benton, 2024). The latest “boom in interest" is massively inflating prices and “fuelling the illicit trade” in fossils (Timmins, 2019). Whereas the US has a ‘finders-keepers’ policy, according to which private traders have carte blanche to dig up and sell any fossils they find, countries such as Brazil, China, and Mongolia do not allow the export of specimens overseas (Timmins, 2019). Sadly, this does little to prevent illegal smuggling; the laws are sometimes vague, and enforcement can be difficult when no single government agency is responsible for monitoring palaeontological activities (Winters, 2024). According to David Hone, a reader in zoology at Queen Mary University of London, “not every fossil is scientifically valuable”; but they are all “objects…worthy of protection,” and too many “scientifically important fossils appear briefly on the auction house website” before “vanish[ing] into a collector’s house, never to be seen again” (Hone, 2024). Museums, universities, and other scientific organisations are finding it more and more difficult to “financially compete with wealthy, private purchasers” as they are simply being priced out of the market (Paul, 2024). As sales become less open to expert scrutiny, the risk of forgery and price distortions become greater. It also has negative implications for future research. Private collectors might give access to one scientist, but not allow others to corroborate their findings. If the fossils aren’t open to all, many institutions simply won’t examine the items in private collections as a matter of principle. (Timmins, 2019). The general public also loses out in a world where dinosaur fossils are reduced to expensive conversation pieces. As Hone writes, “we might never dig up another Stegosaurus, or never find one nearly as complete as [Apex].” Having waited 150 million years to be unearthed, this latest fossil is one of many that may not see the light of day for a very long time. Bibliography Benton, M. (2024, September 5). Modern palaeontology keeps unmasking fossil forgeries – and a new study has uncovered the latest fake . The Conversation. https://theconversation.com/modern-palaeontology-keeps-unmasking-fossil-forgeries-and-a-new-study-has-uncovered-the-latest-fake-223501 British Geological Survey. (n.d.). Why do we study fossils? British Geological Survey. https://www.bgs.ac.uk/discovering-geology/fossils-and-geological-time/fossils/ Hone, D. (2024, June 10). The super-rich are snapping up dinosaur fossils – that’s bad for science . The Guardian. https://www.theguardian.com/commentisfree/article/2024/jun/10/super-rich-dinosaur-fossils-stegosaurus-illegal-trade-science Kjærgaard, P. C. (2012). The Fossil Trade: Paying a Price for Human Origins. Isis , 103 (2), 340–355. https://doi.org/10.1086/666365 National Park Service. (n.d.). The significance of fossils . U.S. Department of the Interior. https://www.nps.gov/subjects/fossils/significance.htm Paul, A. (2024, July 18). Stegosaurus 'Apex' sold for nearly $45 million to a billionaire . Popular Science. https://www.popsci.com/science/stegosaurus-skeleton-sale/ Timmins, B. (2019, August 8). What’s wrong with buying a dinosaur? BBC News. https://www.bbc.com/news/business-48472588 Winters, G.F. (2024). International Fossil Laws. The Journal of Paleontological Sciences , 19 . https://www.aaps-journal.org/Fossil-Laws.html Previous article Next article apex back to
- Soaring Heights: An Ode to the Airliner | OmniSci Magazine
< Back to Issue 7 Soaring Heights: An Ode to the Airliner by Aisyah Mohammad Sulhanuddin 22 October 2024 edited by Lauren Zhang illustrated by Esme MacGillivray A smile at your neighbour-to-be, a quick check and an awkward squeeze as you sidle into your seat: 18A. Window seat, a coveted treasure! A clatter . Whoops! As you fumble for your dropped phone, your feet–which jut out ungracefully onto the aisle, end up as a speed bump for the wheels of someone’s carry-on. Yeowch! It isn’t without more jostling that everyone finally settles into their seats, and with a scan at the window, the tarmac outside is looking busy. Hmm. It makes sense–this flight is just one of the 36.8 million trips around the world flown over the past year (International Air Transport Association, 2024). Commercial aviation has clocked many miles since its first official iteration in 1914: a 27-km long “airboat” route established around Tampa Bay, Florida (National Air and Space Museum, 2022). Proving successful, it catalysed an industry and led to the establishment of carriers like Qantas, and the Netherlands’ KLM. Mechanics of Ascent (and Staying Afloat) As said Qantas plane pulls up in the window view, its tail dipped red with the roo taxies ahead of you on the tarmac. Your plane is now at the front of the runway queue and the engines begin to roar. You’re thrusted backwards as gravity moulds you to your seat. For a split second, as you look out the window, you can’t help but wonder– how on earth did you even get up here? How is this heavy, huge plane not falling out of the sky? The ability for a plane to stay afloat lies in its wings, which allow the plane to fly. The wings enable this through generating lift (NASA, 2022). Lift is described as one of the forces acting on an object like a plane, countering weight under gravity which is the force acting in the opposite direction, according to Newton’s Third Law ( figure 1a ). A plane's wings are constructed in a curved ‘airfoil’ shape with optimal aerodynamic properties: as pressure decreases above the wing with deflected oncoming air pushed up, the velocity increases, as per Bernoulli’s principle. This increases the difference in pressure above and below the wing, which remains high, generating a lift force that pushes the plane upwards (NASA, 2022) ( figure 1b ). Figure 1a. Forces that act on a plane . Note. From Four Forces on an Airplane by Glenn Research Centre. NASA, 2022 . https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/four-forces-on-an-airplane/ . Copyright 2022 NASA. Figure 1b. An airfoil, with geometric properties suitable for generating lift. Note. From Four Forces of Flight by Let’s Talk Science. Let’s Talk Science, 2024. https://letstalkscience.ca/educational-resources/backgrounders/four-forces-flight . Copyright 2021 Let’s Talk Science. Looking laterally, the thrust of a plane’s engines counters the horizontal drag force that airfoils minimise, all whilst maximising lift. Advancements in plane design over the mid-20th century focused on optimising this ‘Lift to Drag ratio’ for greater efficiency, a priority stemming from the austere, military landscape of World War II (National Air and Space Museum, 2022). Influenced by warplane manufacturing trends, the commercial sphere saw a transition from wooden to durable aluminium frames. In conjunction with this, double-wing biplanes were superseded by single-wing monoplanes ( figure 2a, b ), which had a safer configuration that reduced airflow interference whilst maximising speed and stability (Chatfield, 1928). Figure 2a. A biplane, the De Havilland DH-82A Tiger Moth. Note. From DH-82A Tiger Moth [photograph] by Temora Aviation Museum. Temora Aviation Museum, 2017 . https://aviationmuseum.com.au/dh-82a-tiger-moth/ . Copyright 2024 Temora Aviation Museum. Figure 2b. A monoplane, an Airbus A310. Note. From Airbus A310-221, Swissair AN0521293 [photograph] by Aragão, P, 1995. Wikimedia Commons . https://commons.wikimedia.org/wiki/File:Airbus_A310-221,_Swissair_AN0521293.jpg CC BY-SA 3.0. Taking a Breather Without really noticing it, you’re somewhat upright again. Employing head shakes and gulps to make your own ears pop, you can also hear the babies bawling in discomfort a few aisles back. Blocked ears are our body’s response to atmospheric pressure changes that occur faster than our ears can adjust to (Bhattacharya et al., 2019). Atmospheric pressure describes the weight of air in the atmosphere above a given region of the Earth’s surface (NOAA, 2023), which decreases with altitude. Our bodies are suited to pressure conditions at sea level, allowing sufficient intake of oxygen through saturated haemoglobin within the bloodstream. Subsequently, the average human body can maintain this intake until 10000 ft (around 3000 m) in the air, with altitudes exceeding this likely to result in hypoxia and impairment (Bagshaw & Illig, 2018). Such limits have had implications for commercial flying. Trips in the early era were capped at low altitudes and proved highly uncomfortable: passengers were exposed to chilly winds, roaring engines, and thinner air, and pilots were forced to navigate around geographical obstacles like mountain ranges and low-lying weather irregularities. However, this changed in 1938 when Boeing unveiled the 307 Stratoliner, which featured pressurised cabins. Since then, air travel above breathing limits became possible, morphing into the high-altitude trips taken today (National Air and Space Museum, 2022). Via a process still relevant to us today, excess clean air left untouched by jet engines in combustion is diverted away, cooled, and pumped into the cabin (Filburn, 2019). Carried out in incremental adjustments during ascent and descent, the pressure controller regulates air inflow based on the cockpit’s readings of cruising altitude. Mass computerisation in the late 20th century enabled precise real-time readings, allowing safety features like sensitive pressure release valves, sensor-triggered oxygen mask deployment, or manual depressurisation. However, the sky does indeed dictate the limits, as pressure conditions are simulated at slightly higher altitudes than sea level to avoid fuselage strain (Filburn, 2019). This minor pressure discrepancy plays a part in why we feel weary and tired whilst flying–our cells are working at an oxygen deficit for the duration of the flight. Your yawn just about now proves this point. Time for your first snooze of many… Food, Glorious Food A groggy couple of hours later and it’s either lunch time or dinner, your head isn’t too sure. You wait with bated breath, anticipating the arrival of the flight attendant wheeling the bulky cart through the narrow aisle... Only to be met with a chicken sausage that vaguely tastes like chicken, with vaguely-mashed potato and a vaguely-limp salad on the side. Oh, and don’t forget the searing sweetness of the jelly cup! You’re far from alone in your lukewarm reception of your lunch-dinner. Aeroplane food remains notorious amongst travellers for its supposedly flat taste. Whilst airlines like Thai Airways and Air France have employed Michelin-star chefs to translate an assortment of gourmet cultural dishes to tray table fare (De Syon, 2008; Thai Airways, 2018), the common culprit responsible for the less-than-appetising experience remains – being on a plane. As Spence (2017) details, multiple factors play into how you rate your inflight dinner, many relating to the effects of air travel on our bodies. The ‘above sea level’ air pressure within the plane coincides with higher thresholds for detecting bitterness at 5000-10000 ft (around 1500-3000m), heightening our sensitivity to the tart undertones of everyday foods. Dry pressurised air that cycles through the cabin is about as humid as desert environments, which hampers our smell perception and thus taste. Less intuitively, the loud ambient noise of the plane’s engines also appears to hinder olfactory perception, though the reason as to why remains unclear. Nevertheless, alleviating the grumbling passenger and stomach is an area of interest with a few successful forays. One angle of approach involves food enhancement. Incorporating sensory and textural elements into meals such as chillies and the occasional crunch or crackle can compensate for impaired perception. Interestingly, umami has been observed as the least affected taste sense mid-air (Spence, 2017), inspiring British Airways’ intense and aromatic umami-rich menus – though with the unwitting drawback of threatening to stink up the plane on multiple occasions (Moskvitch, 2015). Meanwhile, Singapore Changi Airport houses a simulation chamber for food preparation in a low-pressure environment, taking it up a notch in both quality and cost (Moskvitch, 2015). Alternatively, passengers can be psychologically tricked into perceiving food to be more appetising than it is in reality. Some examples of this include the use of noise-cancelling headphones, cabin lighting designed for enhancing the appearance of food, or appealing language for describing meals. Both off-ground and in air, it was found that humans were inclined to respond more positively to dishes described in an appetising and detailed manner (Spence, 2017), rather than the vague choices of “sausage or pasta”. Whilst these innovations have covered some ground, De Syon (2008) also notes that sociology can influence our perceptions of food on a plane. The enjoyment of meals is dependent upon core social rituals like dining communally or comforting meal-time habits–both of which are tricky to navigate and achieve on a packed plane with front-on seating. What Goes Up Must Come Down Not long now! Accompanied by the movies you’ve played for the first time in your life and oodles of complimentary tea, there’s about half an hour left until landing. Jolt! The seatbelt sign is bold and bright as you can feel the plane gradually descending–it’s getting bumpy! As your plane rocks about and the airport comes into view as a speck in the distance, your descent is at the mercy of the crosswinds… and turbulence? Not only do these vortices of air cause havoc mid-flight, near cloud bands and thunderstorms (National Weather Service, 2019), they also pose a challenge during landing in the form of local, “clear-air” convection currents invisible on radar. These currents often occur in summer months and in the early afternoon when incoming solar energy is at its highest. In particular, they emerge when the surface of the earth is unevenly heated, including across regions such as the oceans, grassland, or in this case, the pavement near the airport. Consequently, this creates pockets of warm and cool air that rapidly rise and fall, creating downdrafts, thereby trapping planes ( figure 3 ). Luckily, pilots are specifically trained to recognise these surface winds, and can adjust their landing glidepath to suit local conditions forewarned in Terminal Aerodrome Forecasts for a steady, controlled descent (BOM, 2014). Figure 3. Varying glidepath due to local convection currents - note the different types of surfaces. Note. From Turbulence by National Weather Service. National Weather Service, 2019. https://www.weather.gov/source/zhu/ZHU_Training_Page/turbulence_stuff/turbulence/turbulence.htm . Copyright 2019 National Weather Service. Even with its bumpier experiences that draw endless complaints, it is undeniable that commercial aviation has grown tremendously over the century to deliver the safe, efficient and comfortable flights we are accustomed to today. Building upon a history of ingenuity and scientific discovery, it's almost certain that the industry will soar to even greater heights in our increasingly globalised world. Enough talk–you’re finally here! It’s a relief when you clamber from your seat, giving those arms and legs a much needed stretch. Now, time to trod along on solid ground… …and onto the connecting flight. Cheap stopover tickets. Darn it. References Aragão, P. (1995). Airbus A310-221, Swissair AN0521293 . Wikimedia Commons. https://upload.wikimedia.org/wikipedia/commons/9/9b/Airbus_A310-221%2C_Swissair_JP5963897.jpg Bagshaw, M., & Illig, P. (2019). The aircraft cabin environment. Travel Medicine , 429–436. https://doi.org/10.1016/b978-0-323-54696-6.00047-1 Bhattacharya, S., Singh, A., & Marzo, R. R. (2019). “Airplane ear”—A neglected yet preventable problem. AIMS Public Health , 6 (3), 320–325. https://doi.org/10.3934/publichealth.2019.3.320 BOM. (2014). Hazardous Weather Phenomena - Turbulence . Bureau of Meteorology. http://www.bom.gov.au/aviation/data/education/turbulence.pdf Chatfield, C. H. (1928). Monoplane or Biplane. SAE Transactions , 23 , 217–264. http://www.jstor.org/stable/44437123 De Syon, G. (2008). Is it really better to travel than to arrive? Airline food as a reflection of consumer anxiety. In Food for Thought: Essays on Eating and Culture (pp. 199–207). McFarland. Filburn, T. (2019). Cabin pressurization and air-conditioning. Commercial Aviation in the Jet Era and the Systems That Make It Possible , 45–57. https://doi.org/10.1007/978-3-030-20111-1_4 International Air Transport Association. (2024). Global Outlook for Air Transport . https://www.iata.org/en/iata-repository/publications/economic-reports/global-outlook-for-air-transport-june-2024-report/ Let’s Talk Science. (2024). Four Forces of Flight . Let’s Talk Science. https://letstalkscience.ca/educational-resources/backgrounders/four-forces-flight Moskvitch, K. (2015, January 12). Why does food taste different on planes? British Broadcasting Corporation. https://www.bbc.com/future/article/20150112-why-in-flight-food-tastes-weird NASA. (2022). Four forces on an Airplane . Glenn Research Center | NASA. https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/four-forces-on-an-airplane/ National Air and Space Museum. (2022). The Evolution of the Commercial Flying Experience . National Air and Space Museum; Smithsonian. https://airandspace.si.edu/explore/stories/evolution-commercial-flying-experience National Weather Service. (2019). Turbulence . National Weather Service. https://www.weather.gov/source/zhu/ZHU_Training_Page/turbulence_stuff/turbulence/turbulence.htm NOAA. (2023). Air pressure . National Oceanic and Atmospheric Administration. https://www.noaa.gov/jetstream/atmosphere/air-pressure Spence, C. (2017). Tasting in the air: A review. International Journal of Gastronomy and Food Science , 9 , 10–15. https://doi.org/10.1016/j.ijgfs.2017.05.001 Temora Aviation Museum. (2017). DH-82A Tiger Moth . Temora Aviation Museum. https://aviationmuseum.com.au/dh-82a-tiger-moth/ Thai Airways. (2018). THAI launches Michelin Star street food prepared by Jay Fai for Royal Silk Class and Royal First Class passengers . Thai Airways. https://www.thaiairways.com/en_ID/news/news_announcement/news_detail/News33.page Previous article Next article apex back to
- Meet OmniSci Editor Tanya Kovacevic | OmniSci Magazine
Mee t OmniSci Editor Tany a Kovacevic Tanya is an editor at OmniSci, currently in her third year of the Bachelor of Biomedicine and studying a concurrent diploma in Italian. For Issue 4: Mirage, she is contributing to four articles as an editor. interviewed by Caitlin Kane What are you studying? I am studying a Bachelor of Biomedicine, currently in third year, and a Diploma in Italian. I’m majoring in human structure and function, which looks at how the body works: the muscles, the bones, the visceral organs, everything. I’m hoping to get a research subject placement at the Florey Institute because I have a very big passion for neurology. I feel like it will be fun to get exposure to both what’s happening behind the scenes through research and be able to apply it in the future as well. I want to hopefully go into medicine and become a GP with a focus on neurology. What first got you interested in science? My primary school wanted to start introducing science subjects and I was chosen as one of the students to give it a shot. I found that I really enjoyed it. Especially when the skeleton was brought out of the closet–all dusty and stuff–and we finally started to use it. Then compulsory science subjects at high school, I continued to find that interesting. I thought, I guess I’ll stick with this. What is your role at OmniSci? I started off writing a piece during lockdown and I wrote my first piece about lockdown fatigue. I remember speaking to my psychologist about it because I was experiencing it. When I heard of it, I thought this actually explains a lot so I wanted to share that with other people. I applied for the editing role as well, so that’s what I’ve been doing these last three years. I quite enjoy helping people flesh out their ideas. I find that I’m quite an analytical and meticulous person, so I will always look for the little things that could go wrong and always like to correct them. I thought it was a pretty good fit! What would you say to someone else who was thinking about getting involved at OmniSci? It’s really open with what you can do. You can communicate with so many different people. Getting involved is a good way of exploring your own interests and putting your skills to the test. It’s nice having something on the side that takes your mind off study but is also related to things that you enjoy. It's a good pastime but also something that gives you professional experience. Kills two birds with one stone. What is your favourite thing about contributing at OmniSci so far? I like seeing when it gets printed and everything has been put together, because you really see the contribution of everyone, and it all falls into place. While you're doing it, it’s sort of “I’ve got to focus on this aspect,” but then it’s nice seeing how your feedback has been included and how people have really improved in their writing and been able to use the skills of others. It’s a very collaborative thing that comes together. It’s a good product, especially with all the cool illustrations. I love looking at art–not very good at it, but I love looking at it. It’s exciting to see something that I was interested in while writing or editing come to life in a physical representation, an artistic interpretation. Can you give us a sneak peek or pitch of what you're working on this issue? With Mirage it’s very open ended. Placebo effect is something that everyone talks about, but there are hidden aspects that we don’t quite think about. It’s interesting looking at a bit of the biology behind it, particularly between the different sexes. That’s one thing to look out for! What do you like doing in your spare time (when you're not contributing at OmniSci)? Reading all sorts of stuff, watching TV shows and movies–I’m a bit of a film fanatic as well. Going outside and playing tennis or walking my dog. I love spending time with my dog. My dog is my life so he takes up a bit of my time. Do you have any media recommendations? One of my favourite international films is called ‘I cento passi’ or ‘One Hundred Steps’. It’s an Italian movie about the mafia and the man it’s based on is very courageous. I think it’s something we all need to see to remind us that we do have a voice even in such horrible, dark moments. I think that’s definitely something that people can look into! It’s on Youtube with subtitles [https://www.youtube.com/watch?v=lhc9S8txE9c]. Which chemical element would you name your firstborn child (or pet) after? That’s a very um… specific question! Curium is one, so Marie Curie. Fantastic woman, pioneering woman, who was definitely ahead of her time. Or Thorium, because Thor! Read Tanya's articles Sick of lockdown? Let science explain why. Law and Order: Medically Supervised Injecting Centres Space exploration in Antarctica Believing in aliens... A science? Behind the Mask From Fusion to Submarines: A Nuclear Year