Search Results
114 items found for ""
- Space exploration in Antartica
< Back to Issue 3 Space exploration in Antartica By Ashleigh Hallinan 10 September 2022 Edited by Tanya Kovacevic and Breana Galea Illustrated by Aisyah Mohammad Sulhanuddin Next The isolated southern expanse of the Earth is an alien realm, with vast expanses of white ice and blue sky that appear to stretch on infinitely. Despite its barren landscape, the Antarctic continent holds secrets to the origins of our Earth and the solar system in the form of meteorites. Meteorites are solid pieces of debris that originate in outer space, survive the journey through our atmosphere, and fall to the Earth’s surface.(1) Their unique components and pungent smells contain fascinating stories of cosmic clouds, condensing stardust and the fiery collisions of entire planets. These ‘space rocks’ can land anywhere on Earth, but the vast majority of meteorites are found in the cold deserts of Antarctica.(2) So, why Antarctica? Across the globe, meteorite abundance is dependent on two factors: the meteorites must be easy to spot, and their preservation must be guaranteed over long time periods.(3) It is the conditions of the Antarctic landscape that make all the difference when it comes to meteorite discovery. The cold, dry nature of Antarctica helps to preserve these extraterrestrial rocks, allowing for more pristine samples to be collected. In this way, we may think of Antarctica as a ‘natural freezer’. In fact, meteorites can be buried and preserved in the Antarctic ice for up to millions of years, allowing for a deep dive into the origins of the solar system upon analysis. Furthermore, meteorites are easier to find in Antarctica due to the stark contrast between the dark colours of meteorites and the white ice. And since so few rocks naturally form on ice sheets, you can be fairly certain the majority of rocks found in Antarctica are extraterrestrial. However, an expedition to Antarctica for meteorite hunting is no small feat. Thankfully, landscape processes occurring on the Antarctic continent create concentrated pockets of meteorites, making the hunt for meteorites less like trying to find a needle in a haystack. These meteorite hotspots are largely a result of the local geology and movement of ice across the Antarctic landscape.(4) As meteorites strike glaciers, they are buried and encased in the ice. These glaciers move across the landscape, acting as ‘conveyor belts’ that carry the meteorites until they reach a large barrier, such as the Transantarctic Mountains. The ice flow is blocked and builds up at the base of the mountain. Here, dry Antarctic winds slowly erode the ice, revealing a bounty of imprisoned meteorites. Traditionally, meteorites have been divided into three broad categories: stony, stony-iron, and iron.(5) While stony meteorites are made up of silicate minerals, iron meteorites are almost completely made of metal. Unsurprisingly, stony-iron meteorites are composed of nearly equal amounts of metal and silicate crystals. Alarmingly, warmer temperatures and melting ice associated with global warming may hinder our search for meteorites. This is particularly the case for iron meteorites, which conduct heat more efficiently than other meteorite types due to their higher metal content.(6) Consequently, meteorites can sink into the ice and out of sight. Despite Antarctica’s otherworldliness, it is not free of the impacts brought about by human activity occurring on landmasses separated by vast seas. However, with the help of artificial intelligence and machine-learning, the quest for meteorite discovery continues. Scientists recently estimated there are as many as 300,000 more meteorites to be discovered in Antarctica, their stories waiting to be uncovered in a never-ending game of hide-and-seek.(7) Using machine learning to combine satellite measurements of temperature, surface slope, speed of ice flow, and reflection of radar signals by ice, scientists have developed a ‘treasure map’ containing the predicted locations of concentrated meteorite zones.(7) The ’treasure map’ is accessible online,(8) so anyone can search the Antarctic continent for rocky remnants left over from the formation of the solar system. When we think of space exploration, we conjure up images of astronauts and spaceships. But Antarctica provides us with the opportunity to peer into the cosmos without ever leaving Earth, given we are brave enough to face the inhospitable conditions and pervasive alienness of the Earth’s southernmost continent. References 1. Sephton M, Bland P, Pillinger C, Gilmour I. The preservation state of organic matter in meteorites from Antarctica. Meteoritics & Planetary Science. 2004;39(5):747-54. 2. Corrigan C. Antarctica: The Best Place on Earth to Collect Meteorites. CosmoELEMENTS; 2011. p. 296. 3. Schlüter J, Schultz L, Thiedig F, Al‐Mahdi B, Aghreb AA. The Dar al Gani meteorite field (Libyan Sahara): Geological setting, pairing of meteorites, and recovery density. Meteoritics & Planetary Science. 2002;37(8):1079-93. 4. Steigerwald B. NASA Scientist Collects Bits of the Solar System from an Antarctic Glacier Greenbelt: NASA; 2018 [Available from: https://www.nasa.gov/feature/goddard/2018/antarctic-meteorites. 5. Lotzof K. Types of meteorites [Internet]. Natural History Museum; [Available from: https://www.nhm.ac.uk/discover/types-of-meteorites.html. 6. Evatt G, Coughlan M, Joy K, Smedley A, Connolly P, Abrahams I. A potential hidden layer of meteorites below the ice surface of Antarctica. Nature communications. 2016;7(1):1-8. 7. Tollenaar V, Zekollari H, Lhermitte S, Tax DM, Debaille V, Goderis S, et al. Unexplored Antarctic meteorite collection sites revealed through machine learning. Science Advances. 2022;8(4). 8. Tollenaar V, Zekollari H, Lhermitte S, Tax DM, Debaille V, S G. Antarctic Meteorite Stranding Zones [Internet]. [Available from: https://wheretocatchafallingstar.science/. Previous article Next article alien back to
- When Dark Matters | OmniSci Magazine
< Back to Issue 5 When Dark Matters Ingrid Sefton 24 October 2023 Edited by Celia Quinn Illustrated by Louise Cen To put it simply, the entire visible universe is huge. In the scheme of it, we really are just tiny dots on a floating rock, in a vast and constantly expanding cosmos. Yet, as it turns out, that’s not even close to the full story. All the visible objects, planets and galaxies contribute less than 15% of the mass in the universe. The other 85%? Nobody knows for certain, but it has a name. Dark matter. More can be said about what dark matter is not, than what it is. It isn’t the baryonic or “normal” matter such as protons, neutrons and electrons which comprise our visible world. It also isn’t antimatter, composed of subatomic particles with opposite charges to normal matter. Instead, dark matter interacts with normal matter in a manner entirely different to that of antimatter. It’s not a type of black hole, nor simply a form of radiation, or a type of massless particle. So, what can be conclusively said? Essentially, nothing. As the name suggests, dark matter emits no light and therefore is not visible in the way normal matter is, making it difficult to observe. In fact, dark matter has only been “observed” by way of its gravitational effects. Therefore, we know it must have mass in order to be able to interact with visible matter gravitationally. It’s also imperative for it to be big enough to cause the massive gravitational effects seen in galaxies (Lochner et al., 2005). Estimates place the mass-energy content of the cosmos as being composed of 26.8% dark matter, 68.3% dark energy and a relatively miniscule 4.9% normal matter (Greicius, 2013). The terms dark matter and dark energy are often thrown around somewhat interchangeably. However, they explain distinct aspects of observed gravitational and physical phenomena. Dark matter can be thought of as an invisible substance which is only seen through its effects on gravity - the unexplained gravitational forces that hold together rapidly rotating galaxies and stopping them from flying apart. Dark energy is then the force responsible for pushing these clusters of galaxies and the universe apart, accelerating the rate of expansion of the universe (NASA/WMAP Science Team, 2013). Given the lack of answers about what dark matter is, an interesting question to ponder is how its existence was even discovered. Swiss astronomer Fritz Zwicky was the first to propose the idea of “dark matter”. His observations of the Cloma galaxy cluster led him to suggest if individual galaxies within the cluster were only held together by the gravitational force of visible mass, the galaxies should fly apart due to their high velocity (American Museum of Natural History, 2000). He termed this mysterious force responsible for binding galaxy clusters together “dark matter”. It wasn’t until the 1970s that Vera Rubin became the first person to establish the existence of dark matter through her work with spiral galaxies. Spiral galaxies aren’t stationary. They rotate, with stars different distances from the centre moving in roughly circular orbits around this centre. The highest concentration of visible stars is found within the core region of a galaxy, leading to the assumption that the majority of mass, and therefore gravity, should also be concentrated there. An implication of this is the expectation that the farther a star is from this gravitational centre of a galaxy, the slower its projected orbital speed should be (American Museum of Natural History, 2000). However, alongside astronomer Kent Ford, Rubin made the puzzling observation that stars in both the centre and outer regions of any galaxy were moving at the same speed (American Museum of Natural History, 2000). Her calculations provided convincing observational evidence of Zwicky’s theory. The presence of a significant mass of invisible matter in the outer regions of a galaxy would create an even, spherical distribution of matter, gravitationally explaining the observed rotation of galaxies and their velocity distribution (NASA/WMAP Science Team, 2013). Fifty years later and experimental evidence still remains the only “proof” of dark matter we have, having been unable to directly detect dark matter. Despite this, a majority of scientists are confident in its existence. Rubin’s insight into the velocity distribution of galaxy rotation curves is amongst some of the most convincing observational evidence for the presence of dark matter. Also supporting its existence are the various discrepancies that arise in the process of gravitational lensing. Gravitational lensing occurs when an emitted source of light is deflected or distorted by the gravitational field of a large mass. Based upon the degree of deflection, the gravitational potential of the object can be calculated, alongside the amount of matter in the lensing object (Xenon Dark Matter Project, 2022). Yet, the strength of this gravitational lensing observed in many galaxy clusters is significantly greater than that calculated from visible matter alone. These inconsistencies point to the existence of unseen mass, or dark matter, as a convincing explanation for the observed lensing effects. It’s become clear that the standard model of physics, explaining the different particles and forces comprising the visible world, cannot be used in attempting to explain dark matter. In response, researchers are exploring a number of avenues to find hypothetical new particles. Amongst the most likely candidates for the composition of dark matter are two classes of particles: Weakly Interacting Massive Particles (WIMPs) and axions. WIMPs are distinguished as a class of particles created thermally in the early universe at very high temperatures, while axions originate predominantly from non-thermal mechanisms (Griest, 2002). Compared to WIMPS, or other known type of particles, axions would be thousands of times lighter but also significantly more abundant than WIMPs (Darling & Knight, 2022). Given the infinite potential to invent hypothetical substances that resolve the enigma of dark matter, experimentation to find these particles has significant challenges. Current research efforts are focused on the detection of such particles. More than a kilometre underground in Stawell, Victoria, the Stawell Gold Mine has been converted into an underground laboratory – one with no light, no noise, and no radioactivity to interfere with dark matter signals (Lippincott, 2023). Here, an experiment known as DAMA/Libra, which started in Italy in 1998, is being replicated. For two decades, what is suspected to be dark matter has been detected at the same time each year in Italy. The Stawell Lab is seeking to verify these results, operating below the equator to determine any potential effect of seasonal interference from the Earth (Darling & Knight, 2022). The research utilises the technology SABRE (Sodium iodide with Active Background REjection), which are sodium iodide crystals that emit flashes of light if a sub-atomic particle hits the nuclei of atoms within the crystals (Darling & Knight, 2022). Hence, if a particle of dark matter hits a nucleus, a tiny flash of light should be created. Simultaneously, researchers at the University of Western Australia have been working on the detection project ORGAN (Oscillating Resonant Group Axion), in order to determine the presence of axions (McAllister, 2022). Despite not having detected any dark matter signals thus far, such experimentation has still offered important insights. Not detecting dark matter within a certain mass range and level of sensitivity allows exclusion limits to be set around the possible characteristics of axions. This tells researchers where to stop looking and, instead, where they should be focusing their resources and efforts. Despite the disarray around “solving” the conundrum of dark matter, alongside its less than reassuring name, it’s not actually something that people should be scared about. The gravity that dark matter is responsible for enables our existence, with dark energy having allowed the expansion of the early universe to become what we see, and don’t see, today (Xenon Dark Matter Project, 2022). Detecting the presence of dark matter is about advancing our understanding of the size, structure, and future of the universe. Current research approaches may seem slightly haphazard, attempting to find something that has never been detected and may not even exist. But when pursuing strange cosmological phenomena beyond our understanding, taking a wild stab in the dark may be exactly what we need to do. References American Museum of Natural History (2000). Vera Rubin and Dark Matter . Retrieved September 1, 2023 from https://www.amnh.org/learn-teach/curriculum-collections/cosmic-horizons-book/vera-rubin-dark-matter Darling, A., & Knight, B. (August 20, 2022). The search for dark matter . ABC News. https://www.abc.net.au/news/2022-08-21/dark-matter-particle-physics-sabre-experiment-stawell-victoria/101113010 Greicius, T. (March 21, 2013). Planck Mission Brings Universe Into Sharp Focus. NASA. https://www.nasa.gov/mission_pages/planck/news/planck20130321.html Griest, K. (2002). WIMPs and MACHOs . In P. Murdin (Ed.), Encylopedia of Astronomy and Astrophysics: CRC Press. Lippincott, H. (August 9, 2023). Researchers dig deep underground in hopes of finally observing dark matter. The Conversation. https://theconversation.com/researchers-dig-deep-underground-in-hopes-of-finally-observing-dark-matter-211075 Lochner, J. C., Williamson, L., & Fitzhugh, E. (2005). Possibilities for Dark Matter. Retrieved August 29, 2023 from https://imagine.gsfc.nasa.gov/educators/galaxies/imagine/titlepage.html McAllister, B. (July 26, 2022). This Australian experiment is on the hunt for an elusive particle that could help unlock the mystery of dark matter. The Conversation. https://theconversation.com/this-australian-experiment-is-on-the-hunt-for-an-elusive-particle-that-could-help-unlock-the-mystery-of-dark-matter-187014 NASA/WMAP Science Team. (2013). WMAP produces new results . Retrieved September 13, 2023 from https://map.gsfc.nasa.gov/news/ Xenon Dark Matter Project. (2022). Dark Matter . Retrieved August 25, 2023 from https://xenonexperiment.org/partners/ Wicked back to
- Protecting our genetic information | OmniSci Magazine
Science Ethics Should We Protect Our Genetic Information? By Grace Law What is a top story that has been brewing in our news in recent months? This column provides an introduction to the topic and why we should care about it. For this issue, our focus is on the security of our genetic and biometric data. Edited by Juulke Castelijn & Khoa-Anh Tran Issue 1: September 24, 2021 Illustration by Aisyah Mohammad Sulhanuddin Our genetic and biometric data, like DNA and fingerprints, make each of us unique and identifiable. This information is invaluable in allowing us to verify our identity, predict personal characteristics, identify medical conditions, and trace our ancestry. But there are consequences we should be aware of when we are sharing this data. It is often not known exactly what our information is used for. We must make a more informed decision about the services we obtain in exchange for our biometric and genetic information. The unknown consequences of medical tests Most of us would not hesitate to get a blood or genetic test. These tests have been instrumental in allowing us to identify genetic abnormalities, monitor our health, and provide peace of mind in pregnancies. However, some companies and 3rd parties have exploited the trust patients placed in them to analyse these data beyond the original medical intentions. Reuters reported in July 2021 of a Chinese gene company, BGI, using leftover genetic data from their prenatal test to research population traits (1). The test is sold in at least 52 countries to detect abnormalities like Down’s syndrome in the fetus but it also captures genetic and personal information about the mother. The company confirmed that leftover blood samples are used for population research, and the test’s privacy policy states that data collected can be shared when “directly relevant to national security or national defence security” in China (2). This is not the only instance of genetic data being exploited by a state for mass examination and surveillance purposes. The Australian Strategic Policy Institute (ASPI) published a research paper identifying the Chinese Government Ministry of Public Security’s mass DNA collection campaigns on millions of men and boys (3). It aims to ‘comprehensively improve public security organs’ ability to solve cases, and manage and control society’ (4). Certainly such databases are useful to forensic investigations, but the mass collection of genetic data raises serious human rights concerns regarding ownership, privacy and consent. Furthermore, it opens the possibility of surveillance by the government (5). Everyone should be giving fully informed consent for the usage of their genetic information in accordance with international human rights law (6). ‘At-home’ genetic kits are not guaranteed to be secure Although there is no evidence of such scales of surveillance in Australia, we are not immune to exploitation and questionable practices. Direct-to-consumer (DIC) genetic tests are widely available, often through online purchases. These tests advertise as being able to indicate predisposition to various diseases, including diabetes, breast cancer and heart disease (7). However, as these processes don’t always involve the advice and interpretation of a doctor, there are concerns that data may be analysed beyond current medical understanding. Misinformation, such as misdiagnosis or exaggeration of the certainty of the user’s health conditions, can cause unnecessary anxiety. The discovery of medical predispositions can have ongoing consequences, including refusal of coverage from insurance companies and discrimination by society (8). Under the US Genetic Information Nondiscrimination Act, employees cannot discriminate against employers on the basis of genetic information. Australia currently relies on existing Commonwealth, state and territory anti-discrimination laws to protect against discrimination in public domains (9). Companies are also not regulated by the law in what they do with the information collected. Many have been found to use the information beyond providing results to consumers, such as for internal research and development, or providing it to third parties without additional consent (10). Ancestry tests are another type of DIC test facing similar scrutiny. As we all share genetic information with our relatives, these tests allow us to identify distant relatives, and even help solve mysteries and capture a serial killer (11). Testing companies therefore have portions of genetic information from relatives without needing to obtain their consent, as well as being able to identify familial lineages. These examples highlight the difficulty of protecting consumer privacy and maintaining ownership of our genetic information. The daily convenience of biometric data and its unintended side-effects Most of us do not encounter the aforementioned tests daily, but we often use our biometric data in many aspects of our lives. As technology advances, fingerprint readers, facial scanners, and even retina/iris scanners are available on our phones to replace traditional PINs. These have been widely adopted due to their convenience. However, our security is being compromised in the process. Not only is your device easier to hack compared to passwords, but the collection of biometric data can also be illegally obtained from improper storage (12, 13). We cannot change our biometric data like a password. Once it is compromised, it is beyond our control. Meanwhile, technology is advancing to include new types of biometric data like voice recognition, hand geometry and behaviour characteristics. As our lives become more public through social media, others may be using this opportunity to collect more information. TikTok’s update on its privacy policy recently included permission to gather physical and behavioural characteristics, but it is unclear what it is being used for (14). These examples highlight why we should be aware of the consequences and compromisation we make in using biometric data for daily convenience. Looking to the future There is certainly no shortage of interest in our genetic information and biometric data. Unfortunately, current legislation is fairly general and therefore not equipped to deal with the variety of issues that emerge with specific technologies. Exacerbating this effect are the continual advances made in this technology, with the law simply not keeping up. But that does not mean we are helpless. A landmark case found that an Australian worker being fired for refusing to use a fingerprint scanner at work was unjust (15). This shows our rights over our genetic information are still in our own hands. While we should be vigilant at all times, it should not deter us from accessing the necessary medical tests or saving us a few seconds each time we access our phones. It is more important to protect ourselves: be aware of our rights, the policies we are consenting to, and the possible implications of a service. Whilst appropriate legislation still needs to be developed, we can hold companies accountable for their policies. We should also be critical in whether we publicise all of our information, and be cognizant of the way our data is stored. This is an instance where we really should read the terms and conditions before accepting. References: 1 . Needham, Kirsty and Clare Baldwin. “Special report: China’s gene giant harvests data from millions of women.” Reuters, July 8, 2021. https://www.reuters.com/legal/litigation/chinas-gene-giant-harvests-data-millions-women-2021-07-07/ . 2. Australian Broadcasting Corporation. “China’s BGI group using prenatal test developed with Chinese military to harvest gene data.” July 8, 2021. https://www.abc.net.au/news/2021-07-08/prenatal-test-bgi-group-china-genetic-data-harvesting/100276700 . 3. Dirks, Emile and James Leibold. Genomic surveillance: Inside China’s DNA dragnet. Barton, ACT: Australian Strategic Policy Institute, 17 June, 2020. https://www.aspi.org.au/report/genomic-surveillance . 4. Renmin Net. “Hubei Yunxi police helped to solve a 20-year-old man’s duplicated household registration issue.” 18 November, 2021. https://www.abc.net.au/news/2021-07-08/prenatal-test-bgi-group-china-genetic-data-harvesting/100276700 . 5. Wee, Sui-Lee. “China is Collecting NDA From Tens of Millions of Men and Boys, Using U.S. Equipment.” 17 July, 2020. https://www.nytimes.com/2020/06/17/world/asia/China-DNA-surveillance.html . 6. United Nations Human Rights Office of the High Commissioner. Universal Declaration on the Human Genome and Human Rights. Paris, France: United Nations, 11 November, 1997. https://www.ohchr.org/en/professionalinterest/pages/humangenomeandhumanrights.aspx . 7. Norrgard, Karen. “DTC genetic testing for diabetes, breast cancer, heart disease and paternity,” Nature Education 1, 1(2008): 86. https://www.nature.com/scitable/topicpage/dtc-genetic-testing-for-diabetes-breast-cancer-698/. 8, 10. Consumer Reports. “The privacy risks of at-home DNA tests.” Washington Post, September 14, 2020. https://www.washingtonpost.com/health/dna-tests-privacy-risks/2020/09/11/6a783a34-d73b-11ea-9c3b-dfc394c03988_story.html . 9. National Health and Medical Research Council. Genetic Discrimination. Canberra, Australia: November, 2013. https://www.nhmrc.gov.au/about-us/publications/genetic-discrimination. 11. Jeong, Raehoon. “How direct-to-consumer genetic testing services led to the capture of the golden state killer.” Science in the News, 2 September, 2018. https://sitn.hms.harvard.edu/flash/2018/direct-consumer-genetic-testing-services-led-capture-golden-state-killer/ . 12. Lee, Alex. “Why you should never use pattern passwords on your phone.” Wired UK, 3 July, 2020. https://www.wired.co.uk/article/phone-lock-screen-password . 13. Johansen, Alison Grace. “Biometrics and biometric data: What is it and is it secure?” NortonLifeLock, 8 February, 2019. https://us.norton.com/internetsecurity-iot-biometrics-how-do-they-work-are-they-safe.html . 14. McCluskey, M. “TikTok Has Started Collecting Your ‘Faceprints’ and ‘Voiceprints.’ Here’s What It Could Do With Them.” Time, 14 June, 2021. https://time.com/6071773/tiktok-faceprints-voiceprints-privacy/ . 15. Perper, Rosie. “An Australian worker won a landmark privacy case against his employer after he was fired for refusing to use a fingerprint scanner.” Business Insider Australia, 22 May, 2019. https://www.businessinsider.com.au/australian-worker-wins-privacy-case-against-employer-biometric-data-2019-5?r=US&IR=T.
- From the Editors-in-Chief | OmniSci Magazine
< Back to Issue 4 From the Editors-in-Chief by Caitlin Kane, Rachel Ko, Patrick Grave, Yvette Marris 1 July 2023 Edited by the Committee Illustrated by Gemma van der Hurk Scirocco, summer sun, shimmering on the horizon. Salt-caked channels spiderweb your lips, scored by rivulets of sweat. Shifting, hissing sands sting your legs. You are the explorer, the adventurer, the scientist. A rusted spring, you heave forward, straining for each step, hauling empty waterskins. ----- The lonely deserts of science provide fertile ground for mirages. An optical phenomenon that appears to show lakes in the distance, the mirage has long been a metaphor for foolhardy hopes and desperate quests. The allure of a sparkling oasis just over the horizon, however, is undeniable. The practice of science involves both kinds of stories. Some scientists set a distant goal and reach it — perhaps they are lucky, perhaps they have exactly the right skills. Other scientists yearn to crack a certain problem but never quite get there. In this issue of OmniSci Magazine, we chose to explore this quest for the unknown that may be bold, unlucky, or even foolhardy: chasing the ‘Mirage’. Each article was written entirely by a student, edited by students, and is accompanied by an illustration that was created by a student. We, as a magazine, exist to provide university students a place to develop their science communication skills and share their work. If there’s a piece you enjoy, feel free to leave a comment or send us some feedback – we love to know that our work means something to the wider world. We’d like to thank all our contributors — our writers, designers, editors, and committee — who have each invested countless hours into crafting an issue that we are all incredibly proud of. We’d also like to thank you, our readers; we are incredibly grateful that people want to read student pieces and learn little bits from the work. That’s enough talking from us until next issue. Go and read some fantastic student writing! Previous article Next article back to MIRAGE
- A Message from the Editors in Chief | OmniSci Magazine
< Back to Issue 5 A Message from the Editors in Chief Rachel Ko & Ingrid Sefton 24 October 2023 Edited by Committee Illustrated by Aisyah Mohammad Sulhanuddin “There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know. But there are also unknown unknowns. There are things we don't know we don't know.” - Donald Rumsfeld Science should never be considered as pursuing absolute truth. In fact, more often than not, the deeper we dive into its exploration, the more questions that arise. The world of science affords us choices in how we appropriate the understandings and knowledge gained in its study. Every day, science pushes us to tiptoe this fine line between pushing boundaries and crossing them altogether. It is perhaps this unknown that makes the pursuit of science so wicked in itself, taunting us with the promise of making the next big discovery, or finally finding the cure to cancer. But it is also what drives us, entrances us, and keeps our desire for knowledge burning — it’s edge-of-your-seat exciting. At its onset, we envisioned this issue as a chance to probe the mysterious nuances of science — a peek into the ‘Wicked’ness of the world. Seeking to ask questions of the ethical, the malicious and the unknown, contributors were inspired to delve into the darker sides of science. Each article ventures into the limits of what we do, and, just as importantly, don’t know in this ever-evolving field. The word Wicked in itself is a complex character, begging for ambiguous interpretation. Is there such a thing as pure evil? Are we all, just a bit, inherently wicked? What makes something wickedly cool? (Was Kristin Chenoweth’s Glinda the best portrayal that Broadway could ask for?) And so, in the hands of our creators, something wicked this way comes … As with every edition of our magazine, each piece has been created, edited and illustrated entirely by students. This issue continues to stand true to our aim of providing a platform within, and beyond, the university community for students of all backgrounds to craft their science communication skills in a supportive, creative environment. Countless hours have been poured into the curation of each edition with the hope of making innovative science content easily accessible — so please, enjoy! To all our passionate, dedicated contributors - thank you for the time you have invested in crafting the wonderful, wicked world of Issue 5 of OmniSci. It has been a privilege to watch the collaboration of inquisitive minds, from diverse scientific and artistic worlds, produce this collection of work. We also wish to extend our gratitude to you, our wonderful readers, in your ongoing support of OmniSci. The time you give to reading and engaging with our student-driven magazine does not go unnoticed, motivating and inspiring us for our future endeavours. Now, take a moment, and come venture into the Wicked world of Issue 5 with us… Wicked back to
- Hiccups | OmniSci Magazine
< Back to Issue 2 Hiccups Evolution might be a theory, but if it’s evidence you’re after, there’s no need to look further than your own body. The human form is full of fascinating parts and functions that hold hidden histories - from the column that brought you a deep-dive into ear wiggling in Issue 1, here’s an exploration of why we hiccup! by Rachel Ko 10 December 2021 Edited by Katherine Tweedie and Ashleigh Hallinan Illustrated by Gemma Van der Hurk Hiccups bring a special brand of chaos to a day. It’s one that lingers, rendering us helpless and in suspense; a subtle, internal chaos of quiet frustration that forces us to drop what we’re doing to monitor each breath – in and out, in and out – until the moment they abruptly decide to stop. It’s an experience we’ve all had – one that can hit anyone at any time – and for most of us, hiccups are a concentrated episode of inconvenience; best ignored, and overcome. Yet, despite our haste to get rid of them when they interrupt our day, hiccups seem to have mystified humans for generations. Historically, the phenomenon has been the source of many superstitions, both good and bad. A range of cultures associate them with the concept of remembrance: in Russia, hiccups mean someone is missing you (1), while an Indian myth suggests that someone is remembering you negatively for the evils you have committed (2). Likewise, in Ancient Greece, hiccups were a sign that you were being complained about (3), while in Hungary, they mean you are currently the subject of gossip. On a darker note, a Japanese superstition prophesises death to one who hiccups 100 times. (4) Clearly, the need to justify everything, even things as trivial as hiccups, has always been an inherent human characteristic, transcending culture and time. As such, science has more recently made its attempt at objectively identifying a reason behind the strange phenomenon of hiccups. After all, if you take a step back and think about it, hiccups are indeed quite strange. Anatomically, hiccups (known scientifically as singultus) are involuntary spasms of the diaphragm (5): the dome-like sheet of muscle separating the chest and abdominal cavities. (6) The inspiratory muscles, including the intercostal and neck muscles, also spasm, while the expiratory muscles are inhibited. (7) These sudden contractions cause a rapid intake of air (“hic”), followed by the immediate closure of the glottis or vocal cords (“up”). (8) As many of us have probably experienced, a range of stimuli can cause these involuntary contractions. The physical stimuli include anything that stretches and bloats the stomach, (9) such as overeating, rapid food consumption and gulping, especially of carbonated drinks. (10) Emotionally, intense feelings and our responses to them, such as laughing, sobbing, anxiety and excitement, can also be triggers. (11) This list is not at all exhaustive; in fact, the range of stimuli is so large that hiccups might be considered the common thread between a drunk man, a Parkinson’s disease patient and anyone who watches The Notebook. The one thing that alcohol, (12) some neurological drugs (13) and intense sobbing (14) do have in common is that they exogenously stimulate the hiccup reflex arc. (15) This arc involves the vagal and phrenic nerves that stretch from the brainstem to the abdomen which cause the diaphragm to contract involuntarily. (16) According to Professor Georg Petroianu from the Herbert Wertheim College of Medicine, (17) many familiar home remedies for hiccupping – being scared, swallowing ice, drinking water upside down – interrupt this reflex arc, actually giving these solutions a somewhat scientific rationale. While modern research has successfully mapped out the process of hiccups, their purpose is still unclear. As of now, the hiccup reflex arc and the resulting diaphragmatic spasms seem to be effectively useless. Of the existing theories for the function of hiccups, the most prominent seems to be that they are a remnant of our evolutionary development, (18) essentially ‘vestigial’; in this case, a feature that once served our amphibian ancestors millions of years ago, but now retain little of their original function. (19) In particular, hiccups are believed to be a relic of the ancient transition of organisms from water to land. (20) When early fish lived in stagnant waters with little oxygen, they developed lungs to take advantage of the air overhead, in addition to using gills while underwater. (21) In this system, inhalation would allow water to move over the gills, during which a rapid closure of the glottis – which we see now in hiccupping – would prevent water from entering the lungs. It is theorised that when descendants of these fish moved onto land, gills were lost, but the neural circuit for this glottis closing mechanism was retained. (22) This neural circuit is indeed observable in human beings today, in the form of the hiccup central pattern generator (CPG). (23) CPGs exist for other oscillating actions like breathing and walking, (24) but a particular cross-species CPG stands out as a link to human hiccupping: the neural CPG that is also used by tadpoles for gill ventilation. Tadpoles “breathe” in a recurring, rhythmic pattern that shares a fundamental characteristic feature with hiccups: both involve inspiration with closing of the glottis. (25) This phenomenon strengthens the idea that the hiccup CPG may be left over from a previous stage in evolution and has been retained in both humans and frogs. However, the CPG in frogs is still used for ventilation, while in humans, the evolution of lungs to replace gills has rendered it useless. (26) Based on this information, it seems hiccupping lost its function with time and the development of the human lungs, remaining as nothing more than an evolutionary remnant. However, we cannot discredit hiccupping as having become entirely useless as soon as gills were lost. Interestingly, hiccupping has only been observed in mammals – not in birds, lizards or other air-breathing animals. (27) This suggests that there must have been some evolutionary advantage to hiccupping at some point, at least in mammals. A popular theory for this function stems from the uniquely mammalian trait of nursing. (28) Considering the fact that human babies hiccup in the womb even before birth, this theory considers hiccupping to be almost a glorified burp, intended to remove air from the stomach. This becomes particularly advantageous when closing the glottis prevents milk from entering the lungs, aiding the act of nursing. (29) Today, we reduce hiccups to the disorder and disarray they bring to our day. But, next time you are hit with a bout of hiccups, take a second to find some calm amidst the chaos and appreciate yet another fascinating evolutionary fossil, before you hurry to dismiss them. After that, feel free to eat those lemons or gargle that salty water to your diaphragm’s content. References Sonya Vatomsky, "7 Cures For Hiccups From World Folklore," Mentalfloss.Com, 2017, https://www.mentalfloss.com/article/500937/7-cures-hiccups-world-folklore. Derek Lue, "Indian Superstition: Hiccups | Dartmouth Folklore Archive," Journeys.Dartmouth.Edu, 2018, https://journeys.dartmouth.edu/folklorearchive/2018/11/14/indian-superstition-hiccups/. Vatomsky, "7 Cures For Hiccups From World Folklore". James Mundy, "10 Most Interesting Superstitions In Japanese Culture | Insidejapan Tours," Insidejapan Blog, 2013, https://www.insidejapantours.com/blog/2013/07/08/10-most-interesting-superstitions-in-japanese-culture/. Paul Rousseau, "Hiccups," Southern Medical Journal, no. 88, 2 (1995): 175-181, doi:10.1097/00007611-199502000-00002. Bruno Bordoni and Emiliano Zanier, "Anatomic Connections Of The Diaphragm Influence Of Respiration On The Body System," Journal Of Multidisciplinary Healthcare, no. 6 (2013): 281, doi:10.2147/jmdh.s45443. Christian Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," Bioessays no. 25, 2 (2003): 182-188, doi:10.1002/bies.10224. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. John Cameron, “Why Do We Hiccup?,” filmed for TedEd, 2016, TED Video, https://ed.ted.com/lessons/why-do-we-hiccup-john-cameron#watch. Monika Steger, Markus Schneemann, and Mark Fox, "Systemic Review: The Pathogenesis And Pharmacological Treatment Of Hiccups," Alimentary Pharmacology & Therapeutics 42, no. 9 (. 2015): 1037-1050, doi:10.1111/apt.13374. Lien-Fu Lin, and Pi-Teh Huang, "An Uncommon Cause Of Hiccups: Sarcoidosis Presenting Solely As Hiccups," Journal Of The Chinese Medical Association 73, no. 12 (2010): 647-650, doi:10.1016/s1726-4901(10)70141-6. Steger, Schneemann and Fox, "Systemic Review: The Pathogenesis And Pharmacological Treatment Of Hiccups," 1037-1050. Unax Lertxundi et al., "Hiccups In Parkinson’s Disease: An Analysis Of Cases Reported In The European Pharmacovigilance Database And A Review Of The Literature," European Journal Of Clinical Pharmacology 73, no. 9 (2017): 1159-1164, doi:10.1007/s00228-017-2275-6. Lin and Huang, "An Uncommon Cause Of Hiccups: Sarcoidosis Presenting Solely As Hiccups," 647-650. Peter J. Kahrilas and Guoxiang Shi, "Why Do We Hiccup?" Gut 41, no. 5 (1997): 712-713, doi:10.1136/gut.41.5.712. Steger, Schneemann and Fox, "Systemic Review: The Pathogenesis And Pharmacological Treatment Of Hiccups," 1037-1050. Georg A. Petroianu, "Treatment Of Hiccup By Vagal Maneuvers," Journal Of The History Of The Neurosciences 24, no. 2 (2014): 123-136, doi:10.1080/0964704x.2014.897133. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. Cameron, “Why Do We Hiccup?” Michael Mosley, "Anatomical Clues To Human Evolution From Fish," BBC News, published 2011, https://www.bbc.com/news/health-13278255. Michael Hedrick and Stephen Katz, "Control Of Breathing In Primitive Fishes," Phylogeny, Anatomy And Physiology Of Ancient Fishes (2015): 179-200, doi:10.1201/b18798-9. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. Pierre A. Guertin, "Central Pattern Generator For Locomotion: Anatomical, Physiological, And Pathophysiological Considerations," Frontiers In Neurology 3 (2013), doi:10.3389/fneur.2012.00183. Hedrick and Katz, "Control Of Breathing In Primitive Fishes," 179-200. Straus et al., "A Phylogenetic Hypothesis For The Origin Of Hiccough," 182-188. Daniel Howes, "Hiccups: A New Explanation For The Mysterious Reflex," Bioessays 34, no. 6 (2012): 451-453, doi:10.1002/bies.201100194. Howes, "Hiccups: A New Explanation For The Mysterious Reflex," 451-453. [1] Howes, "Hiccups: A New Explanation For The Mysterious Reflex," 451-453. Previous article back to DISORDER Next article
- Svante Pääbo: Talking to the Past
Svante Pääbo: Talking to the Past By Lily McCann 23 March 2022 Edited by Caitlin Kane Illustrated by Quynh Anh Nguyen For a collection of numbers on a screen, the World Population Clock stirs a lot of emotions (1). Watch it tick on, recording a life, another life, a death, then more lives. The number — well past 8 billion now — reflects the extent of Homo sapiens’ conquest over the world. Evidence of our culture, with its complex language, society and infrastructure, is everywhere. But we seem to be the only earthly species to live in such a way, the only species to track our own numbers on a digital clock. We swarm the planet, all its continents and yet we are, essentially, alone. To challenge this isolation, scientists reach out in all directions, hoping for some kind of reflection that might shed light on who we are. Astronomers look to space; they probe the depths of the universe in search of life like our own. Others, like Svante Pääbo, look to the past. 300,000 years ago, when Homo sapiens first evolved, there was no paper, no writing, no human-like language with which to record stories, cultures, or day to day recounts. Scant traces of our ancestors are all that are left to tease us: fossilised footprints, makeshift tools, bones, grave sites. These markers are indecipherable whispers, slipping through in a hazy, broken form from a past era to our own. With a time machine or resurrection tool perhaps we could converse with the dead, but while these remain foreign to our current reality, how can we talk to the past? For Pääbo, the language of genetics is the key. Using the information carried in Palaeolithic bones, Pääbo has discovered links between present-day humans and prehistoric hominids that tell the story of our evolution and current condition. These incredible findings have earnt Pääbo the Nobel Prize for Physiology or Medicine in 2022 (2). Some of his most important achievements establishing the field of Paleogenomics include the full sequencing of the Neanderthal genome and the discovery of a whole new hominin species: the Denisovan (3, 4). But what fascinates me is his discovery of genetic interrelations between these prehistoric species and Homo sapiens themselves. Pääbo compared Neanderthal and Denisovan genetics to those of modern humans across the world. He discovered similarities and patterns that suggest a flow of genes took place between our ancestors and these hominid species: in other words, our predecessors mingled sexually with Neanderthals and Denisovans at some point in history, passing their genetics onto us as encoded evidence of this fact (5). Human genomes from Europe and Asia were most closely related to Neanderthal genomes, and Pääbo has shown 1-2% of modern non-African Homo sapiens genes are Neanderthal in origin (3). Similar patterns were observed for Denisovans, with the closest relation with modern humans from Pacific islands (6). This data exposes an intimacy between prehistoric hominids that challenges our idea of humans as a species confined to solitude. This conversation between genomes is not without implications for modern human physiology. When Homo sapiens moved into Eurasia, Denisovan and Neanderthal locals had already adapted to places in which Homo sapiens were mere tourists (7). Transfer of certain genes from local populations into the Homo sapiens line may have assisted in their survival. One example is a gene found in Denisovans that is important for survival at high altitudes and has been inherited by modern day Tibetans (8). Researching the discrepancies between modern and prehistoric genetics can thereby allow us to show the function and significance of these shared genes. It is hard to visualise the world in which Neanderthals and Homo sapiens first met. Did the scene play out as a peaceful interaction between two groups of equals? Perhaps it was more akin to the pattern of colonisation with which we are familiar in modern history. As the last species of our evolutionary branch, the Homo genus, we cannot now recreate such a meeting. However these prehistoric meetings played out, we now have evidence that Homo sapiens and local species of hominids in Eurasia communicated on the most intimate of levels. An optimist might argue that these groups of pre-humans shared a harmonious understanding that could be reproduced if humans find an analogous life form elsewhere in the future. Communication is a powerful tool after all, traversing species and millennia. Perhaps genetic insights into the past can remind us that we are not really as isolated as we might think. References Current world population [Internet]. Worldometer. 2023 [cited 2023Mar7]. Available from: https://www.worldometers.info/world-population/ Hedestam GK, Wedell A. The Nobel Prize in Physiology or Medicine 2022 [Internet]. NobelPrize.org. The Nobel Foundation; 2022 [cited 2023Mar7]. Available from: https://www.nobelprize.org/prizes/medicine/2022/advanced-information/ Green RE, Krause J, Briggs AW, Maricic T, Stenzel U, Kircher M, et al. A draft sequence of the Neandertal genome. Science. 2010May7;328(5979):710–22. Krause J, Fu Q, Good JM, Viola B, Shunkov MV, Derevianko AP, et al. The complete mitochondrial DNA genome of an unknown hominin from southern Siberia. Nature. 2010Mar24;464(7290):894–7. Villanea FA, Schraiber JG. Multiple episodes of interbreeding between Neanderthal and modern humans. Nature Ecology & Evolution. 2018May26;3(1):39–44. Reich D, Patterson N, Kircher M, Delfin F, Nandineni MR, Pugach I, et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. The American Journal of Human Genetics. 2011Oct11;89(4):516–28. Rogers AR, Bohlender RJ, Huff CD. Early history of neanderthals and Denisovans. Proceedings of the National Academy of Sciences. 2017Jul7;114(37):9859–63. Huerta-Sánchez E, Jin X, Asan, Bianba Z, Peter BM, Vinckenbosch N, et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature. 2014;512(7513):194–7. Previous article Next article
- Postdoc Possibilities | OmniSci Magazine
< Back to Issue 2 Postdoc Possibilities Thinking about postgraduate research? This column has some advice for you, courtesy of a recent PhD graduate. by Renee Papaluca 10 December 2021 Edited by Ruby Dempsey and Breana Galea Illustrated by Casey Boswell The idea of (dis)order is apparent in many scientific fields. One example of this is artificial light at night, which can disrupt our ecosystems. I caught up with Marty Lockett, a recent PhD graduate in this field, to learn more about the research pathway and their experience studying science at the University of Melbourne. Marty Lockett. Image included with permission. Marty recently completed his PhD in the Urban Light Lab, School of Biosciences. In his spare time, Marty enjoys birdwatching, Lego and science fiction. What was the ‘light-bulb moment’ that prompted you to study science? “I have always enjoyed the outdoors. For example, bushwalking, snorkelling, birdwatching — all that sort of stuff. I am more of a latecomer to science. About 10 years ago, I took long-service leave from my job. I used to be a lawyer. I ended up spending a lot of time doing volunteer work for conservation and restoration organisations… and I was exposed for the first time to the world of science and ecology. The work involved things like cleaning up rubbish, tree planting, weed removal, and banding and recapturing birds with researchers. It was really eye-opening! I realised I could do this for a job… I had never studied science, apart from chemistry at school. I had never been exposed to ecology or really considered it as a potential career option. Having that opportunity to immerse myself in nature in a more constructive and helpful way, rather than being a passive observer, really got me thinking.” Why did you choose to complete a research pathway? “So, I came into this not having an undergraduate degree in science. I completed a Masters of Environment to begin with. My thinking there was to try and get into environmental management, conservation or restoration management. As part of that masters, I completed a couple of third-year animal behaviour subjects. I found this really interesting as I hadn’t studied much about the behaviour of wildlife. Off the back of that, I decided to focus on this area for my research capstone subject. I met Dr Therésa Jones [current supervisor] and … did a mini research project on artificial light at night which is her area of specialization. From there, I got hooked on research… I wanted to find out more and, from there, decided to complete a PhD… There’s so much to learn about the world. Being in the position where the world now knows something that it once didn’t because of your work is really powerful.” What was the focus of your PhD research? Why did you choose this area? “My main project was looking at the effects of artificial light at night on an important food chain in Eucalyptus woodlands.” “There's a lot of research on the effects of artificial light at night on individual organisms… There's less but increasing research on interactions between species. As you spread out wider, there's [even] less research on more complex communities and on the wider cascading ecological effects of artificial light at night. I wanted to look into the effects of artificial light on a system that was underexplored and really important here in Australia.” “I chose a specific Eucalyptus woodland food chain consisting of river red gum trees, lerp psyllids, and birds that eat them. Lerps are the white bumps you sometimes see on Eucalyptus leaves. These are made by the nymphs [juveniles] of insects called lerp psyllids. Psyllids feed on leaf sap. Since eucalyptus sap is very rich in carbohydrates, they secrete the excess carbohydrates and use it to build little white domes over themselves. This takes a resource which is completely indigestible by most animals [Eucalyptus sap] and it turns it into something that is highly digestible by a whole range of animals… like birds, other insects, possums [and] bats. So lerps are a really key food resource in Eucalyptus woodlands. At the next level of the food chain, I chose a bird that was particularly dependent on lerps known as bell miners. I wanted to see the effect of artificial light at night at each level of this food chain. This is because all three organisms were vulnerable to… [the] effects of artificial light at night in different ways, and impacts at one level of the food chain might have cascading effects on other levels.” What did your day-to-day life as a PhD researcher look like? “It's really varied. In my case, I broke it down into three main work categories. So first up, you've got reading and writing. In the early days, before you start doing any experiments, you've got to learn a lot about your area, find out what's known, what's unknown, form hypotheses and figure out ways of testing them…” “In the middle, there is much more time spent on fieldwork and lab work. The extent of this will vary depending on the project… In my case, it was probably 50/50… An amazing amount of research involves what we refer to as ‘art and crafts’ where, after you design an experiment, you've got to then figure out a way to test that experiment on a tight budget. For example, building insect traps; you have to think about how you will make it work logistically. You need something that can be easily broken down and transported, but is rigid enough to stand up in a street, doesn't blow over in the wind and all those kinds of things. Fieldwork involved rigging up electric lights in a paddock, finding ways to stop parrots eating sound recorders; all kinds of weird stuff I never thought I'd be doing. Then there’s the actual fieldwork itself — catching bugs, measuring trees — whatever it is you need to do to gather data.” “The third main activity is statistical analysis and coding, which often go hand in hand. Most of [my] analysis was done in R [programming language], which was another thing that I hadn't done before… I hadn't really appreciated, as an outsider, just how much time scientists spend on statistics and coding. Coding governs a whole lot of things [in research], not just statistics. So you'll use coding to measure the number and diversity of vocalisations in birdsong recordings. You also may use it for physical mapping of study sites. In stats, there is obviously coding involved in statistical analysis, but also for creating the plots for your papers. It's all coding!” “At the end, you come back to reading and writing. You've gathered all your data, you've written up your results and then you've got to put them in context for your reader.” What advice would you give to students considering this research pathway? “There's two aspects to a PhD. On one hand, you are researching something that is of interest to you. This might be a particular organism, process or scientific question… That's a really important element of the PhD. But the other element is about you upskilling. Basically, a PhD is like a research apprenticeship and it's mostly self-driven… Your supervisor is there to guide you but you've got to come up with all the questions yourself, and figure out how to test them. I feel like it's really important to make the most of both these aspects; you want to do a great research project and find out something interesting that the world didn't know before. But you also want to make sure you're making the most of this time to meet people, take on skills, try things out and get outside your comfort zone. This is really important in making yourself as attractive as possible to future employers and a well-rounded researcher.” What are your future plans following your PhD? “I would like to take these skills and apply them in an in-house ecologist or research position. I’d like to do work where there's a chance to both conduct research and apply what we know to achieve better outcomes for wildlife. So, for example, working on the practical application of artificial light, working with people who make decisions about installing artificial light fixtures and helping them to find better ways to balance the needs of humans and the needs of wildlife.” Previous article back to DISORDER Next article
- Meet OmniSci Writer and Editor Elijah McEvoy | OmniSci Magazine
Mee t OmniSci Writer and Editor Elijah McEvoy Elijah is a writer and editor at OmniSci and a second-year Bachelor of Science student. For Issue 4: Mirage, he is writing about artificial intelligence that masquerades as human, and contributing to two articles as an editor. interviewed by Caitlin Kane What are you studying? Bachelor of Science, looking to major in infection and immunity. I still have some back ups, but that’s looking to be the path. I’m in second year, first semester. Do you have any advice for younger students interested in what you’re studying or more generally? The Bachelor of Science is really, really good. That’s my suggestion. If you’re someone like me who loves all areas of science and was a bit unsure about what path I wanted to go down, then science is really great to explore all those opportunities. What first got you interested in science? I would say probably science fiction movies. I saw Jurassic Park when I was really young and my parents bought it for me on DVD. I found all that science-y background to it very interesting and obviously those stories gets you engaged… What's the scientific backing behind that? That would probably be very early what got me interested in science. Did you always imagine that you would study science formally, or this kind of science? Not exactly. I’ve had the science pathway in mind for a long time, but there were a lot of things in high school that made me consider whether I did or didn’t want to do it. I found writing very interesting in high school, and I was considering whether I do science or I don’t do science… In the end, I’ve found everything that I’m learning so fascinating and I love the ability that I’m continuing to learn everyday in science and that my perspective continues to grow. And the final pathway… is something that’s relatively new. COVID got me interested in studying viruses and microbiology and the management of those situations as well. That is a bit more of a new thing, but all build off continuing to learn and do things in science. What would be your dream role as a scientist? Do you have a job in mind after your studies? I’m a bit undecided… A dream role of mine would definitely involve learning new things, where I can communicate and work in a position that’s not just in a lab or doing continuous research. Something where I can take the stuff learnt in a lab, figured out in a laboratory and apply it to society as a whole, whether working in government or with organisations in public health particularly infection and immunity. What is your role at OmniSci? I’m writing an article for the magazine… I’ve always loved writing and it’s given me an outlet to pursue a bit of writing in a scientific field, which is something very exciting that I’m passionate about. I would describe [editing] as a really great opportunity to work with someone else to hone their idea. I find it very interesting to see what other people's ideas about other aspects of science are and get informed through them, to encourage their opinions and ideas, and the way they express that. Are there other roles you would be interested in trying in the future? Or any other topics you are interested in writing about? Yes, there probably would be. I’ve always found… if you go back to Jurassic park, genetic engineering is always an interesting topic to cover. Particularly one that is growing and growing nowadays with greater access to it. I find all of this very interesting, the science behind genetic engineering… functional and ethical applications, all those questions. How did you get involved with OmniSci? I saw it on the initial club listing in first year, but I don't think anything came out of it… I was trying to figure my way around university as a whole. Then at the start of the year, I made a commitment to myself that I wanted to get involved a bit more. I saw it again in the club listing website and I checked out the website and saw how many people were involved and had different roles and came from different science backgrounds and I thought “oh this looks like a very accepting club and organisation to get involved with” and just signed up! I saw the welcome night that you guys were having and went along to that and decided I wanted to get involved. What is your favourite thing about contributing at OmniSci so far, or something that you’re looking forward to? Giving myself an outlet to learn new things. What I’m writing about isn’t really within my field of science particularly, but it’s a topic I’ve chosen because I find it interesting and it’s encouraged me to go on and learn a lot more about that. But not only that, it’s encouraged me to talk with other people at OmniSci that do know a bit more and can share their opinions. It’s really helped me guide what research I do and where I go from there. That’s probably my favourite thing: giving myself an excuse to learn a bit more about science through writing. Can you give us a sneak peak or pitch of what you're working on this issue? If there’s a lot to come, maybe just what stage you’re up to in the process? Within the theme of mirage, it’s specifically about artificial intelligence that is able to mimic human ability, whether that be human speech, human personality, how we look through deep fake photos and generative AI technology. And looking at how that could potentially impact different wings of life, and how that can be exploited. I mainly go into general discussion of those sort of things and the potential, but I do end on the idea of what needs to be done considering how fast this AI is progressing, and whether regulation is necessary in order to ensure that human work is protected and us as humans are not being exploited by some of the potential applications from this technology. What do you like doing in your spare time (when you're not contributing at OmniSci)? I’m a big movie person. I watch as many movies as possible and I discuss movies with friends… making the most of the student movie nights and cheap deals. Seeing as many movies as possible from a variety of backgrounds. I also like writing. I do a bit of writing in my spare time, but mostly movies. Do you have any movie recommendations? Big question. I love horror movies so if you’re looking for a horror movie I recommend ‘Hereditary’, it’s my favourite horror movie. I guess within the realm of scifi and even artificial intelligence, a really good one that I saw is Ex Machina. Which chemical element would you name your firstborn child (or pet) after? I should be able to think of one—I’m a biochemistry student! Fluorine sounds interesting. Fluora could be a nickname. Yeah, something that you can shorten down. Read Elijah's articles Real Life Replicants
- Discovery, Blue Skies... and Partisan Bickering? | OmniSci Magazine
< Back to Issue 2 Discovery, Blue Skies... and Partisan Bickering? Is the era of bipartisan science dead? Do we discover for discovery’s sake? And what happens when optimistic scientific vision meets cold political reality? Journeying from Cambridge, Massachusetts to Melbourne, Australia and tackling everything from deadlocked appropriations bills and economic mandates to the scientist-politician and the prospect of discovery, this feature tries to shine a light on all those questions, as it ponders what it really means to do science in the age of politics. by Andrew Lim 10 December 2021 Edited by Ethan Newnham & Sam Williams Illustrated by Friday Kennedy The chalk dust hangs in the air. Blackboards scrawled with inheritance trees, genetic disease rates and historical minutiae about a long-deceased Oxford don … they all stand still for a moment. As he walks out, the freshman class surrounds the professor (a man once unironically described as “the rock star of biology”), pestering him with incessant questions. Ambling into the sunny fall day, they are joined by more and more – he cracks a joke about being a “photos kind of guy” and lets them take the obligatory selfie. Image 1: Dr Eric Lander teaching freshman biology at MIT in 2012. Looking at the scene, it’s hard to believe that we find here a future member of the Cabinet of the United States. Surely such individuals come from the corridors of Congress or the halls of big business, not this leafy, academic and somewhat-secluded corner of Cambridge, Massachusetts, between an apple tree descended from Isaac Newton’s in the garden and a prototype solar car down the hall. And almost certainly this man, who once steeled himself for a “rather monastic” pure mathematics career and whose main claim to fame was in mapping out the human genome, cannot be the one who someday will be asked to bridge science and politics in what appears an ever more divided union. But he is. In 2021, this very professor, Dr Eric Lander, will be sworn in as Director of the Office of Science and Technology Policy (OSTP), charged by President Joe Biden with maintaining “the long-term health of science and technology” and “guarantee[ing] that [their] fruits … are fully shared”. The mandate belies a time where science increasingly seems to live in the world of partisan political bickering. And so, in an exciting new series of features beginning with this very article, we at OmniSci Magazine are sitting down with those shaping the colliding worlds of science and public service across Australia and around the globe to ask: In a time when Dr Lander’s appointment is heralded by the White House slogan “Science is Back” and Australia sees thirteen Science Ministers in ten years, can science still straddle the political divide, or is the era of bipartisan science dead? What does it mean to discuss national science in an era of international research? And how should scientists and policymakers alike navigate this brave new political world? If not very scientific, it perhaps befits the political side of this feature to begin with the apocryphal. It has been said that The Right Honourable William Ewart Gladstone, the famed four-term 19th-century Liberal Prime Minister of the United Kingdom, was once attending a demonstration by the physicist Michael Faraday, who had just made his first forays into electricity. After the show, Gladstone went to the back of the room to have a word with the inventor: “It’s all very curious, Mr Faraday,” he murmured, “but does it have any practical use?”. The scientist did not miss a beat: “Well, sir,” he responded, “I suspect one day you shall tax it!” Image 2: President John F Kennedy speaking at Rice University in Houston, Texas in September 1962 It’s an old joke that, to many, sums up the cold-hearted and transactional relationship between science and politics. But those of a more optimistic bent would disagree. They would point to the golden age of space exploration, when, over half a century ago, on a sunny September Houston morning, President John F Kennedy famously declared that the United States would “go to the Moon in this decade”. That day, he offered a vision for his country to “set sail on this new sea because there is new knowledge to be gained”, promising an open mandate to learn more about the universe around us, with no reason beyond the sheer wonder of exploration. It was a promise to a nation – one that appeared to transcend party politics. Indeed, it was ironically under the presidency of Richard M Nixon, the man whose campaign had accused Kennedy in 1960 of mass electoral fraud, that Apollo 11 landed on the moon, with Nixon transformed into the man who promised to “not drift, nor lie at anchor…with man's epic voyage into space”. But if overflowing bipartisan support for research as a sheer quest for knowledge was once the case, it certainly seems at odds with political reality today. Both sides of the political aisle seem deeply concerned with the economics of science rather than the prospect of discovery. In Australia, upon the appointment of The Honourable Richard Marles MP as Shadow Minister for Science, Opposition Leader the Honourable Anthony Albanese MP described him as “shadow minister for jobs, jobs and more jobs”. The Shadow Minister himself then highlighted science and technology as key to “micro-economic reform” for Australia. Mere months later, upon The Honourable Melissa Price MP’s appointment as Minister for Science, Prime Minister the Honourable Scott Morrison MP spoke of her portfolio encompassing science and technology “right across the economy, both in civil and defence uses”. To many, this speaks to a wider concern – the neglect of esoteric “blue skies” research (pursuing discovery for discovery’s sake) in favour of scientific research with immediate short-term economic impact. you never quite know what a scientific discovery will lead to or when it’ll be useful (or indeed, vital!) for society. I don’t think our State or Federal Governments are doing enough to fund this kind of science and research, in everything from medical research to physics to studying our threatened species. It needs to be valued a lot more.” Representatives from the Victorian branches of the Australian Labor Party and the Liberal Party of Australia did not respond to our request for comment. It's a trend that Ellen Sandell MP, Deputy Leader of the Victorian Greens, has watched with growing concern. In an exclusive email interview with OmniSci Magazine, she expressed her dismay at the state of “blue skies” science: “Basic research - or the study of science to better understand our world, even if we don’t know where it will lead - is incredibly important. I think the pandemic has shown us just how valuable our scientists are, and Image 3: Ellen Sandell MP on the floor of Victorian Parliament. Image 4: Dr Amanda Caples, Lead Scientist of Victoria However, Lead Scientist of Victoria Dr Amanda Caples, one of the key figures in the Victorian Government’s engagement with research, rejects Sandell’s contention. In her discussion with us, Dr Caples spoke of “an ‘and’ conversation rather than choosing one form of research over another…[a discussion about] hav[ing] a good mix of pure and applied research”. She went on: “most pure research has a purpose or use-case in mind – it’s just not typically driven by commercial interests and the applications are not always evident at the outset. The policy outcome that the Victorian Government is seeking to achieve is to mobilise research knowledge to make it available for use in the economy and community more broadly… Applying the brains of the research community to the problems of industry – and I suggest also of government – is not a novel concept. It is the approach of successful innovation clusters from Cambridge UK to Boston and to Israel. It underpins future industries and high-value jobs, attracts talent and supports service industries. We can do it here in Melbourne too!”. Nonetheless, with all these swirling worries, it’s no surprise that the days of blue-skies research investment seem an enchanting vision – the best that humanity can be, boldly seeking out new frontiers of understanding and knowledge. Yet if exciting, perhaps it is but a mirage. A mere two months after the rhetorical highs of his Houston address, in a White House Cabinet Room meeting not declassified until some 40 years later, Kennedy confided in NASA Administrator James E Webb that if he couldn’t find a practical, political use for the research, “we shouldn't be spending this kind of money, because I'm not that interested in space”. A year after that, as poll numbers and public support for his scientific venture started to wane, Kennedy’s language became sharper. He bluntly told Webb that “we’ve got to wrap around in this country, a military use for what we’re doing and spending in space.” Even in this, space research’s golden age, amidst his lofty rhetoric of human adventure, Kennedy had his eye on the polls, the politicians and the price tags. Image 5: President Biden announcing his plans to form ARPA-H, flanked by Vice President Kamala Harris and Speaker Nancy Pelosi. President Biden and Dr Lander appear to be thinking similarly – at least in terms of searching for a large-scale, popular science mandate that the public will buy into. In the wake of a pandemic, their area of concern seems almost too obvious: health. In his April address to a Joint Session of Congress, President Biden announced his plan to develop an “Advanced Research Projects Agency for Health [ARPA-H]…to develop breakthroughs to prevent, detect, and treat diseases like Alzheimer’s, diabetes, and cancer.” Invoking his son Beau, who died of brain cancer in 2015, he announced increased funding to “end cancer as we know it”, declaring that there was “no more worthy investment…nothing that is more bipartisan…[and] it’s within our power to do it”. A cure for cancer. A man on the moon. Striking, almost visceral promises designed to address the worries of their generation: from national defence in the Cold War to public health amidst a pandemic. It’s something that both Sandell and Caples seem focussed on too. Sandell believes that a continued and increasing emphasis on health research is the way forward for Victoria: “Melbourne is a centre for excellence when it comes to medical research, so the state government has a role in supporting and encouraging this to ensure we maintain that position.” Likewise, Caples thrusts mRNA research into focus, listing one of her key priorities as “driv[ing the] development of frontier technologies such as quantum computing and mRNA.” But to her, the story is not just about the lessons from the pandemic itself, but also about how we rebuild. As she told us, “Nations around the world are investing in science, technology and innovation as they rebuild economies impacted by the coronavirus pandemic. This is because global policymakers understand that a high performing science and research system benefits the broader economy.” This narrative of science as the springboard out of COVID echoes a letter President Biden wrote to Dr Lander upon his appointment, describing science’s power to forge “a new path in the years ahead – a path of dignity and respect, of prosperity and security, of progress and common purpose”. Yet, especially for our stateside counterparts, lofty rhetoric seems no guarantee of avoiding an ugly partisan fight. Just a few years after a Trump White House considered science agency cuts en masse, the issue of funding is back on the congressional table. And it’s not all going well. In the USA, almost all budget laws for federal government agencies, departments and programs begin life as appropriations bills – bills that determine how much money is to be allocated (or “appropriated”) to parts of the government. However, this year, an ongoing Senate deadlock has seen Congress unable to pass any appropriations bills whatsoever. To avert a government shutdown (where no agencies have any money and no federal programs can operate), a stopgap continuing resolution has been implemented, temporarily freezing spending at previous levels, allowing the government to keep operating. On October 18, Senator Patrick Leahy (D-VT), Chair of the Senate Appropriations Committee, announced nine appropriations bills to break the logjam and fund the government (including crucial research agencies) through the 2022 fiscal year. Given the political situation, the bills have been riddled with earmarks – unrelated “pork barrel” projects designed to win over wavering votes (the most famous example of this being a $400 million “Bridge to Nowhere” in Alaska, funded inside a 2005 housing, transport and urban development bill). In just one case of this, $64 million has been carved out of the National Oceanographic and Atmospheric Administration (NOAA) for additional “special projects”. Yet despite these concessions, the bills look to be dragged through a long political battle. In a statement released as Leahy announced his plans, Senator Richard Shelby (R-AL), Vice Chair of the Committee, lambasted them as “partisan spending bills…[and] a significant step in the wrong direction”, vowing to oppose them. On 3rd December 2021, a week before this article’s publication, Congress passed another stopgap continuing resolution following a night of political brinksmanship that brought the government within hours of being defunded and shut down. Regardless, at the time of writing, all appropriations bills remain unpassed and the battle rages on into 2022. It’s a confrontational attitude – and one that seems to not be going anywhere anytime soon. After all, closer to home, we’ve seen university education funding become a political football, with Shadow Education Minister the Honourable Tanya Plibersek MP promising a Labor Party election platform predicated on undoing what she characterises as Morrison government “economic vandalism”. But it’s not all bad news. In her responses, Sandell describes herself as “worried about the hyper-partisan nature of politics at the moment but…buoyed by how science and evidence has been at the heart of our response to the pandemic in Australia, at least here in Victoria.” She sees the issue of a partisan approach to scientific advice as stemming from a greater problem: the non-existence of the scientist-politician. In her words, “When I entered State politics, I was shocked to discover less than 10% of politicians had any form of post-high-school scientific training. I think that’s a real loss for our Parliament and our society…I hope that the pandemic has shown the population and Governments the value of listening to evidence, and that this rubs off into other areas of policy-making.” But she refuses to tie the power of “this scientific type of thinking” to her own values. In her experience, a scientific mode of thinking invites “politicians of all persuasions” to work to integrate their ideology with evidence. A fiscally conservative scientist-politician is just as possible as a social-justice-minded and progressive one – the policies produced might well be different, but the base evidence is constant. Caples is similarly optimistic: “Regardless of politics, the foundational principles of science remains [sic] the same - which is to expand our knowledge of the natural world, to progress society and develop innovations to meet its challenges. While debates – political or otherwise – might take place on the peripheries of scientific learning, these tenets remain the same to build the evidence base.” After all, the pitch Webb made in his 1963 meeting with Kennedy relied not on social justice, progressivism nor Cold War tactics. It was so much simpler: “man [is] looking at three times what he’s never looked at before… and he understands the Universe just looking at those three things…these are going to be finite things in terms of the development of the human intellect. And I predict you are not going to be sorry, no Sir, that you did this.” Image 6: Vice President Kamala Harris administering the oath of office to Dr Eric Lander, as his wife Lori watches on. That notion of the lasting good that discovery can do – its place as a rung on the ladder of human progress, in so many ways beyond the governance of a single place or a single point in time – is a sentiment that echoes on through the decades. In June 2020, while being sworn in, Lander took some time to ruminate about the text on which he was swearing his oath of office. He told Vice President Kamala Harris about the particular page of the Mishnah (a Jewish text compiled from oral tradition) he had used, which discusses “a very special concept in Jewish tradition called Tikkun Olam, the repairing of the world…it says we don’t have to finish the work, but we may not refrain from doing that work…[it] speaks in many ways to the work of this administration, of repairing the world, building back better.” Caples’ final comments to OmniSci Magazine touch a similar note – “as a lapsed pharmacologist, I look at my work through the lens of a receptor-ligand binding model. Where the receptor is the problem that needs to be solved (or the opportunity to be pursued) and my role is to build the ligand that holds together long enough to bind to the receptor and effect change. The ligand of course has to have the right composition and 3-dimensional structure to be effective, that is people and governance framework.” Sandell agrees: “With the big challenges our world is facing - from climate change to pandemics - scientists are needed now more than ever. And for those thinking about going into policy-making, make sure you keep an open mind, look at the evidence and collaborate with others. Our world needs policy-makers who have a genuine desire to solve some of the big problems of our time, not people who are just in it for themselves. Don’t get discouraged by what you might see in Question Time or the depressing nature of politics at times - we need good, curious people from all walks of life to join politics to improve the tenor of debate and ultimately improve our world.” The consensus from all three? Yes – every day of the week, politics seems dirtier, and the policy problems seem greater than ever before. They may not be issues we can finish in our lifetimes – the solutions we create may not work, the “ligands” may not “bind”, forever. Yet because we might well fail is no reason to “refrain from doing that work”; no reason for “good, curious people” not to try. But, to the man who we began with – that energised professor in Building 26 at MIT – such philosophical musings are all yet to come. There, Dr Lander cracks a caustic quip about his students, reminding them that only a few centuries before, people thought their brains were only there to vent heat. It’s almost ironic to consider that his job will eventually hinge on a handful of brains and egos on Capitol Hill. Tikkun Olam: repairing the world. It appears to be the gallant ambition of saints. Or maybe the quixotic endeavour of fools. So complicated it hardly seems worth the effort. Throughout this magazine, you have read stories of science’s remarkable ability to create patterns amidst chaos, find the quantitative inside the qualitative and build order amidst disorder. These pages provide the opposite – offering no data to extrapolate, no empirical test to conduct, no nice charts and graphs to view. Just a messy, complicated ball of disordered contradictions. It was Aristotle who suggested that democracy was inherently dangerous – that this bubbling cauldron of ideas and ideals, pragmatism and ideology, could not be entrusted to the ballot box. And, indeed, the notion that everything would be easier should we just “follow the science”, as though science was some monolithic entity with its own set of ideologies, seems tempting from time to time. But the questions raised here – of immediate benefits weighed against blue-sky thinking; of hard-to-sell science pondered alongside popular mandates; of political leanings measured next to scientific impartiality – don’t fit nicely into our boxes of conservative and liberal; left and right; moderate and progressive. They are far too complex, far too nuanced and far too important to be rendered into a three-word slogan, a thirty-word answer, or even a three-thousand-word feature article. And maybe – just maybe - that’s why they matter. Andrew Lim is an Editor and Feature Writer with OmniSci Magazine. Image Credits (in order): Michael C. ’16, from “Eric Lander, spring rolls, and the New York Times” in MIT Admissions Blog Sept 6, 2012; Robert Knudsen. White House Photographs. John F. Kennedy Presidential Library and Museum, Boston; The Office of Ellen Sandell MP; The Office of the Lead Scientist of Victoria; Melina Mara/The Washington Post; Official White House Photo by Cameron Smith, accessed via the Library of Congress. Previous article back to DISORDER Next article
- The Evolution of Science Communication | OmniSci Magazine
< Back to Issue 2 The Evolution of Science Communication In the current age of social media, users hold far more autonomy over the posts and information which they share online. However, this was not always the case, with the media once being far more regulated, and restricted for only certain individuals. With users now having far more power over content posted online, how does this impact the information which others receive about the COVID-19 pandemic? by Monica Blasioli 10 December 2021 Edited by Khoa-Anh Tran & Yen Sim Illustrated by Rachel Ko Trigger warning: This article mentions illness, and death or dying. Since the beginning of the pandemic in March 2020, science communication has started to evolve in ways never before seen across the globe. There appears to be an endless amount of infographics, Facebook posts, and YouTube and TikTok videos… including some with dancing doctors. Information not only about the COVID-19 virus, but countless diseases and scientific concepts, is available in more casual, accessible language at only the touch of a button. Any questions which you might have about science or your body can be answered through a quick Google search. In this sense, science communication is now far more rapid, as well as more accessible than in research papers (which always seem like they are written in a foreign language at times). However, the downside of having vast amounts of information available is that it can create challenges in determining the validity of what is being presented. In previous years, science communication was typically limited to the more typical forms of media, such as in a newspaper or a magazine, or even through a television interview. These were typically completed by professionals in the field, such as a research scientist or a medical doctor. When looking at the 1920 Influenza outbreak, many citizens at that time would have received their information from printed newspapers and posters on bulletin boards, as seen below. Image 1, [1] Somewhat similar to today's age, there were signs displaying the importance of mask-wearing, and newspapers explaining the closures of schools and shops, the distribution of vaccines, and reports of death rates. These messages were, and still are, created and approved by larger institutions, governments and medical professionals, particularly doctors. As seen on the (left / right / below / above), doctors are urging people to not become complacent, despite a recent drop in influenza cases. This is rather similar to current newspaper or television news reports - only in reference to COVID-19, instead of influenza. Image 2, [2] There were, of course, still groups which were uncertain about the scientific evidence being provided by journalists, doctors and government officials at this time. In November of 1918, it was declared that “the epidemic of [influenza] disease is practically over,” with mask laws being relaxed. However, only a few days later, the previous mask laws were reintroduced with a spike in Influenza cases. As unpacked in Dr Dolan’s research [3], the “Anti-Mask League” formed and protested in response to this back track, claiming that masks were unsanitary, unnecessary, and stifling their freedom. As this was during the early 20th century, the league advertised their protests in local newspapers, with reports that hundreds of San Francisco residents were fined for not abiding by mask rules, often due to their alliance with the Anti-Mask League. The San Francisco Anti-Mask League is one of the most renowned and infamous groups of its time, with smaller-scale groups also questioning the science being communicated. This type of conflicting information surrounding mask issues, and the opinion that they restrict personal freedoms, have incited similar responses throughout history. However, resistance by anti-mask groups has not existed on such an influential and global scale, as it has during the current COVID-19 pandemic. With the rise of the age of “new media,” including platforms such as Instagram and Facebook, individuals now have far more autonomy over their role in the media, meaning that they yield a lot more power over the information others are receiving. Almost anybody can interpret scientific material online and upload it in a video of them dancing to some music on TikTok, spreading information to potentially hundreds of thousands of viewers across the globe. In many ways this new found autonomy and power can be quite beneficial. Australian Doctor Imogen Hines uses her platform on TikTok, alongside her medical education and current scientific research, to break down medical treatments and mistruths, particularly surrounding the COVID-19 pandemic. These videos use simple language and straight-forward analogies, “humanising” the often intimidating figures in the medical field, and allowing the general public to be well-informed about scientific concepts. For example, Dr Imogen breaks down the research surrounding long term side effects of vaccines using a milkshake analogy! https://www.tiktok.com/@imi_imogen1/video/7027448207823211777?is_copy_url=1&is_from_webapp=v1&lang=en On the other hand, this phenomenon can have pretty serious ramifications, with many individuals feeling rightfully confused about what the truth really is, when there appears to be so many versions of it posted across the internet. Following a rather controversial study on Ivermectin as a treatment for COVID-19, the internet was soon buzzing with excitement about the prospect of a drug that many believed could replace the need for a vaccine. Despite numerous gaps in the original study, and countless further studies refuting Invermectin’s ability to treat COVID-19, many social media users are continuing to spread this myth online. Both governments and hospitals alike have been accused of hiding a seemingly “good” cure from their citizens. In Texas, a group of doctors won a legal case which allowed Texas Huguley Hospital to refuse administering Ivermectin to a COVID-19 infected Deputy Sheriff. This sparked outrage on Facebook, with users and the Sheriff’s wife demanding greater freedoms over their medical treatments, instead of just relying on the judgement of doctors and hospital staff. In this instance, the misinformation surrounding Ivermectin is not only influencing individuals to seek out futile treatments, but it is also spreading mistrust with the science and medical communities, who work incredibly hard to protect the world, particularly over the past two years. Despite Ivermectin being used in a clinical setting to treat parasitic (not viral) infections in humans for a number of years now, it can be extremely dangerous for individuals to have complete power over their medical treatments. The dosage and timing of treatment is crucial in ensuring success. Just like with everyday medications such as paracetamol, taking Ivermectin in high doses is risky. A COVID-19 infected woman from Sydney who read about Ivermectin on social media took a very high dosage of the drug after purchasing it from an online seller, which resulted in severe diarrhea and vomiting. In order to combat some of this misinformation, a number of social media platforms are “fact checking” posts or providing warnings on posts with keywords, such as ‘COVID-19’ or ‘vaccination.’ On Instagram, each post with these keywords will contain a banner at the bottom inviting users to visit their “COVID-19 Information Centre,” which provides a list of information supported by WHO and UNICEF about how vaccines are of high-standard, well-researched, and generally resulting in mild side effects. In addition, on Facebook, posts identified to be spreading mistruths will provide users with websites explaining the truth, before they can access the original posts. However, these warnings and fact-checks can only go so far. Posts blindly supporting the use of Ivermectin, falsely reporting side effects of vaccines, and arguing that masks cannot block virus particles still circulate the internet. Often those most vulnerable in the community are at risk of being led astray with misinformation. In principle, evidence-based, concise, easy-to-understand science communication is essential to break down the barrier between research and the general public, ensuring that citizens are well-informed and more comfortable about the world around them. In the situation of a public health crisis such as the COVID-19 pandemic, this communication is crucial in ensuring that all citizens can remain well-informed, safe and healthy. Misinformation and dodgy studies can not only lead people astray, but also cost them their health and wellbeing. References: 1. Kathleen McGarvey, “Historian John Barry compares COVID-19 to the 1918 flu pandemic,” University of Rochester, October 6, 2020. https://www.rochester.edu/newscenter/historian-john-barry-compares-covid-19-to-1918-flu-pandemic-454732/ 2. Kathleen McGarvey, “Historian John Barry compares COVID-19 to the 1918 flu pandemic,” University of Rochester, October 6, 2020. https://www.rochester.edu/newscenter/historian-john-barry-compares-covid-19-to-1918-flu-pandemic-454732/ 3. Brian Dolan, Unmasking History: Who Was Behind the Anti-Mask League Protests During the 1918 Influenza Epidemic in San Francisco? Perspectives in Medical Humanities (San Francisco: UC Medical Humanities Consortium, 2020) Previous article back to DISORDER Next article
- Hope, Humanity and the Starry Night Sky
< Back to Issue 3 Hope, Humanity and the Starry Night Sky By Andrew Lim 10 September 2022 Edited by Manfred Cain and Yvette Marris Illustrated by Ravon Chew Next Image 1: The Arecibo Observatory looms large over the forests of Puerto Rico The eerie signal reverberates out over the Caribbean skies, amplified by the telescope below. It oscillates between two odd resonating tones for little more than a couple of minutes, then shuts off. Eminent scholars, government administrators and elected representatives watch in wonderment, their eyes glued open. The forest birds and critters chirp and sing. It is November 16, 1974 – from a little spot in Arecibo, Puerto Rico, Earth is about to pop its head out the door to say ‘hello’. Those sing-song tunes, beamed out into space on modulated radio waves, are a binary message designed for some alien civilisation– a snapshot of humanity in 1679 bits. It sounds like the beginning of a bad sci-fi flick: the kind that ends with little green men coming down in UFOs for a cheap-CGI first contact. But it isn’t, and it doesn’t. Instead, the legacy of those telescope-amplified sounds – that ‘Arecibo Message’ – has a place in history as a symbol of human cooperation, here on Earth rather than in the stars. The message’s unifying vision imbued the famous ‘pale blue dot’ monologue of its co-creator Carl Sagan; and led to the launch of a multi-year international programme designing its successor message 45 years on, presenting extra-terrestrial communication as a mirror of our earth-bound relations. A unified message symbolizing a unified humanity. The previous feature in this series (Discovery, Blue Skies…and Partisan Bickering?) ended with a declaration of nuance: that science in politics matters solely because it transcends partisan bounds with clear analysis. Yet, looking at stories like Arecibo’s, so imbued with human optimism, maybe this cold, logical formulation isn’t enough. Perhaps for all its focus on appropriations bills, initiative funding and flawed infrastructure, that perspective lends insufficient weight to science’s ability to inspire, to cut through the fog of day-to-day policy battles with a beacon of what could yet be. But is this talk of hope just ideological posturing – a triumphant humanism gone mad? Or could there be some merit to its romantic vision of humanity speaking with one voice to the stars? Might it possibly be that science really is the key to bridging our divisions? COOPERATION AMIDST CHAOS Well, why not begin in the times of Arecibo? After all, the interstellar message came at a key moment in the Cold War. Just a few months before, US President Richard Nixon had made his way to Moscow to meet with General Secretary Leonid Brezhnev, leader of the USSR. The signing of a new arms treaty, a decade-long economic agreement and a friendly state dinner at the Kremlin all seemed to indicate a world inching away from the edge of nuclear apocalypse. Such pacifist optimism is found readily in the message’s surrounding documents, with its research proposal speaking glowingly of future messages designed and informed by “international scientific consultations…[similar to] the first Soviet-American conference on communication with extraterrestrial [sic] intelligence.” Indeed, it seems the spirit of the age. Soon after the Arecibo message’s transmission, the Apollo-Soyuz Test Project would see an American Apollo spacecraft docking with a Soviet Soyuz module. Mission commanders Thomas Stafford and Alexei Leonov conducted experiments, exchanged gifts, and even engaged in the world’s first international space handshake – a symbol of shared peace and prosperity for both superpowers. Image 2: Thomas Stafford and Alexei Leonov shake hands on the Apollo-Soyuz mission Apollo-Soyuz marked an effective end to the US-USSR ‘Space Race’ (discussed in Part I of this series), and would lead to successor programmes, including a series of missions where American space shuttles would send astronauts to the Russian space station Mir, and eventually the building of the 21st-century International Space Station (ISS). Science seemed capable of forging cooperation amidst the greatest of disagreements, transcending our human borders and divides. Frank Drake, the designer of the Arecibo Message, was filled with optimism, hoping that his message might herald the beginning of a new age, marked by united scientific discovery and unparalleled human growth. He triumphantly declared to the Cornell Chronicle on the day of its transmission that “the sense that something in the universe is much more clever than we are has preceded almost every important advance in applied technology. SCIENTIFIC SPHERES OF INTEREST Yet this rose-tinted vision of science as the great mediator perhaps has a few more cracks in it than its advocates like to admit. Even at the height of Nixon’s Cold War détente, science was not pure intellectual collaboration. Henry Kissinger, Nixon’s National Security Advisor and later Secretary of State, pioneered ‘triangular diplomacy’, the art of playing adversaries off against one another with alternating threats and incentives. In later years, he would declare that “it was always better for [the US] to be closer to either Moscow or Peking than either was to the other”. And as he opened channels of communication with China, it was science that would pave the way for a stronger relationship. In the Shanghai Communique negotiated on Nixon’s 1972 trip to China, both sides “discussed specific areas in such fields as science [and] technology…in which people-to-people contacts and exchanges would be mutually beneficial [and] undert[ook] to facilitate the further development of [them].” Scientific collaboration (often manipulated by spy agencies from the CIA to the KGB) was the carrot beside the military stick – a central part of building alliances in a world of realpolitik. To Kissinger and his colleagues, the world was to be divided into Image 3: US President Richard Nixon shakes hands with CCP Chairman Mao Zedong in China in 1972 spheres of influence, even in times of peace – and science was best used as a way of strengthening and shoring up your own prosperity. It is a realist view of science diplomacy that continues to this day, with US Secretary of State Hillary Clinton noting in Image 4: Chinese Foreign Minister Wang Yi meets with his Cambodian counterpart Prak Sokhonn in September 2021, pledging additional aid and vaccine doses. 2014 that “educational exchanges, cultural tours and scientific collaboration…may garner few headlines, but… [can] influence the next generation of U.S. and [foreign] leaders in a way no other initiative can match”. To both Clinton and Kissinger, science is an instrument of foreign policy, whether deployed overtly in winning over current governments or more subtly in shaping the views of future ones. For them, amidst competing interests and simmering tensions, we ignore science’s soft power at our own peril. Just look at China’s distribution over Sinovac COVID-19 vaccines in the pandemic. In October 2020, January 2021 and September 2021, Chinese Foreign Minister Wang Yi went on tours of Southeast Asia, promising vaccine aid while pushing closer connections between China and the rest of Asia. Last year, it was estimated that China had promised a total of over 255 million vaccine doses – a key step in building stronger economic and military ties in an increasingly tense region. Indeed, in mid-2021, just as concerns about Chinese vaccine efficacy grew, US President Joe Biden announced “half [a] billion doses with no strings attached…[no] pressure for favours, or potential concessions” from the sidelines of a G7 Summit. Secretary of Defence Lloyd Austin travelled across Southeast Asia. In the the Philippines he renewed a military deal just as a new shipment of vaccines was announced – a clear indicator of the linkage between medical and military diplomacy, something reinforced when Vice President Kamala Harris landed in Singapore later that year to declare the US “an arsenal of safe and effective vaccines for our entire world.” Australia is key to vaccine diplomacy too. On his visit here earlier this year, US Secretary of State Antony Blinken made a point of visiting the University of Melbourne’s Biomedical Precinct to talk about COVID-19, declaring on Australian television that our nation was central to “looking Image 5: United States Secretary of State Lloyd J Austin III meets with Philippines President Rodrigo Duterte in July 2021 for negotiations on renewing the Visiting Forces Agreement at the problems that afflict our people as well as the opportunities…dealing with COVID…[in] new coalitions [and] new partnerships.” These views are backed up locally too. Sitting down for an exclusive interview with OmniSci Magazine last year, Dr Amanda Caples, Lead Scientist of Victoria, was keen to characterise her work in terms of these developments, reminding us that Victoria had been key to “improving the understanding of the immunology and epidemiology of the virus, developing vaccines and treatments and leading research into the social impact of the pandemic”, and emphasising Australia’s national interest, declaring that “global policymakers understand that a high performing science and research system benefits the broader economy…science and research contribute to jobs and prosperity for all rather than just the few.” Science, it seems, whether in vaccines, trade or exchanges, just like fifty years ago, is again to be a key tool for grand strategy and national interests. Image 6: Dr Amanda Caples, Lead Scientist of Victoria ARGUMENTS AND ARMS But perhaps even this might be too optimistic an outlook – for that simmering balance of power occasionally boils over. We need only to look at what happened when the détente of Nixon and Brezhnev was dashed to pieces with the Soviet invasion of Afghanistan in 1979. The policy was roundly condemned as sheer naïveté in the face of wily adversaries, with President Ronald Reagan later describing détente in a radio address as “what a farmer has with his turkey – until Thanksgiving Day”. Science was the first target for diplomatic attacks. After the invasion, Senator Robert Dole (R-KS) launched legislation barring the National Science Foundation from funding trips to the USSR. And the push seemed bipartisan, with Representative George Brown Jr. (D-CA-36) proposing a House Joint Resolution enacting an immediate “halt [to] official travel related to scientific and technical cooperation with the Soviet Union”. Image 7: Russia’s cosmonauts board the ISS on 18th March 2022, shortly before Russia ends its participation in the program Now, as we face war on the European continent, even the ISS – the descendant of Apollo-Soyuz’s seemingly-apolitical scientific endeavours – seems to be falling apart spectacularly. On April 2 this year, Roscosmos, the Russian space agency, announced that it would be ending its participation in the ISS program, demanding a “full and unconditional removal of…sanctions” imposed over the Russian invasion of Ukraine. Earlier in the year, Roscosmos’ Director General Dmitry Rogozin openly suggested on Twitter that the ISS being without Russian involvement would lead to “an uncontrolled deorbit and fall [of the station] into the United States or Europe”, alluding to “the option of dropping a 500-ton structure [on] India and China.” Rogozin’s threats became even more pronounced as the war continued, with Roscosmos producing a video depicting Russia’s two astronauts on the station not bringing NASA astronaut Mark Vande Hei back to Earth with them (American astronauts primarily go to and return from space via Russian Soyuz capsules). Shared by Russian state news, its chilling final scenes show the Russian segment of the ISS detaching too, with Vande Hei presumably left to die in space aboard the station. Such attacks need not remain rhetorical, either. Scientific advancements have long been tied to weaponry and defence systems, with mathematicians and physicists from John Littlewood to Richard Feynman involved in making bombs and ballistics in times of war. Even Arecibo, that bastion of a united humanity, began life as a Department of Defence initiative detecting Soviet ballistic missiles. Today, the AUKUS defence partnership – one of the most significant Indo-Pacific defence developments in recent memory – centres on sharing nuclear submarine science and technology, promising scientific cooperation regarding “cyber capabilities, artificial intelligence, quantum technologies, and additional undersea capabilities”. Even if induced by factors beyond our control, such weapons-based science is a far cry from the pacifist ideals of the Arecibo message. Thus, perhaps this messy reality is more central to our science than we like to admit. From the ISS to Australia’s waters, science still is intertwined with conflict and frequently co-opted by geopolitical actors in times of renewed aggression. Science at its worst is mere weaponry. But at its best, it speaks to something greater. HOPE IN THE DARKNESS In June 1977, the world was far from diplomatically stagnant. From the rumblings of Middle Eastern peace (what became the Camp David Accords) to new hopes of nuclear arms reduction, US President Jimmy Carter had quite the array of diplomatic dilemmas to consider. But amidst all that cold politics, he penned a letter to be sent on board the spacecraft Voyager, now the furthest manmade object from our solar system, declaring “We are attempting to survive our time so we may live into yours…This record represents our hope and our determination, and our good will in a vast and awesome universe.” And if this magazine has purported to speak to the ‘alien’ – far removed from our human lives - then perhaps we have discovered quite the opposite: that looking out up there is so much about looking in down here. Science presents a way we can look out at the alien and see ourselves – “survive our time…into yours”, finding a path ahead reflected in the inky blackness above. We are often constrained by time and circumstance, forced in the face of nefarious actors to compromise our idealism and use science as a mere weapon or tool. Discovery for discovery’s sake is frequently the first casualty when battle lines are drawn and aggression begun, and too often the political pessimism of the scientist can seem overpowering. But if the stories of broken détentes, diplomatic realpolitik and weaponised technology have made it all feel inevitable, then perhaps it is worth considering the story we began with, looking up into the night sky and remembering that somewhere amidst the stars is a tiny warble in the electromagnetic spectrum. Long after the funds and papers that forged it have faded away, after the people who wrote it have perished, it will continue. In its odd combination of ones and zeroes, it will represent humanity: our contradictions and our fears, our constant foibles and infighting, but also our occasional glimpses of a future beyond them. A signal…a reminder that when the times, the people Image 8: President Jimmy Carter’s message, sent aboard Voyager, the furthest man-made probe from Earth and the ideas line up just right, science can be the torchbearer for something greater. Something so rare that amidst all the ills of the world, it often seems non-existent, and so powerful that over two millennia ago, Aeschylus himself deemed it the very thing given to humanity by Prometheus to save us from destruction – the ideal that transformed us from mortals fixated on ourselves and our deaths to a civilisation capable of great things. “τυφλὰς…ἐλπίδας”, he called it: blind hope. A handshake in a capsule. A life-saving jab on board a ship. A binary message in a bottle, out among the stars. Fleeting images – not of what we are, but of what we can be: visions of blind hope, that sheer belief that we can grow past our worst violent impulses and reach out into the great beyond. Maybe it’s foolish. Maybe it’s naïve. But, on a brisk fall evening, looking out at a sky full of stars, each one more twinkling than the last, it’s easy to stop and imagine…maybe it’s the only thing that matters. Andrew Lim is an Editor and Feature Writer with OmniSci Magazine and led the team behind the Australian Finalist Submission to the New Arecibo Message Challenge. Image Credits (in order): National Atmospheric and Ionosphere Centre; National Aeronautics and Space Administration; National Archives Nixon White House Photo Office Collection; Kith Serey/Pool via Reuters; Malacanang Presidential Photo via Reuters; The Office of the Lead Scientist of Victoria; AP; National Aeronautics and Space Administration Previous article Next article alien back to