top of page

Search Results

114 items found for ""

  • Hope, Humanity and the Starry Night Sky

    < Back to Issue 3 Hope, Humanity and the Starry Night Sky By Andrew Lim 10 September 2022 Edited by Manfred Cain and Yvette Marris Illustrated by Ravon Chew Next Image 1: The Arecibo Observatory looms large over the forests of Puerto Rico The eerie signal reverberates out over the Caribbean skies, amplified by the telescope below. It oscillates between two odd resonating tones for little more than a couple of minutes, then shuts off. Eminent scholars, government administrators and elected representatives watch in wonderment, their eyes glued open. The forest birds and critters chirp and sing. It is November 16, 1974 – from a little spot in Arecibo, Puerto Rico, Earth is about to pop its head out the door to say ‘hello’. Those sing-song tunes, beamed out into space on modulated radio waves, are a binary message designed for some alien civilisation– a snapshot of humanity in 1679 bits. It sounds like the beginning of a bad sci-fi flick: the kind that ends with little green men coming down in UFOs for a cheap-CGI first contact. But it isn’t, and it doesn’t. Instead, the legacy of those telescope-amplified sounds – that ‘Arecibo Message’ – has a place in history as a symbol of human cooperation, here on Earth rather than in the stars. The message’s unifying vision imbued the famous ‘pale blue dot’ monologue of its co-creator Carl Sagan; and led to the launch of a multi-year international programme designing its successor message 45 years on, presenting extra-terrestrial communication as a mirror of our earth-bound relations. A unified message symbolizing a unified humanity. The previous feature in this series (Discovery, Blue Skies…and Partisan Bickering?) ended with a declaration of nuance: that science in politics matters solely because it transcends partisan bounds with clear analysis. Yet, looking at stories like Arecibo’s, so imbued with human optimism, maybe this cold, logical formulation isn’t enough. Perhaps for all its focus on appropriations bills, initiative funding and flawed infrastructure, that perspective lends insufficient weight to science’s ability to inspire, to cut through the fog of day-to-day policy battles with a beacon of what could yet be. But is this talk of hope just ideological posturing – a triumphant humanism gone mad? Or could there be some merit to its romantic vision of humanity speaking with one voice to the stars? Might it possibly be that science really is the key to bridging our divisions? COOPERATION AMIDST CHAOS Well, why not begin in the times of Arecibo? After all, the interstellar message came at a key moment in the Cold War. Just a few months before, US President Richard Nixon had made his way to Moscow to meet with General Secretary Leonid Brezhnev, leader of the USSR. The signing of a new arms treaty, a decade-long economic agreement and a friendly state dinner at the Kremlin all seemed to indicate a world inching away from the edge of nuclear apocalypse. Such pacifist optimism is found readily in the message’s surrounding documents, with its research proposal speaking glowingly of future messages designed and informed by “international scientific consultations…[similar to] the first Soviet-American conference on communication with extraterrestrial [sic] intelligence.” Indeed, it seems the spirit of the age. Soon after the Arecibo message’s transmission, the Apollo-Soyuz Test Project would see an American Apollo spacecraft docking with a Soviet Soyuz module. Mission commanders Thomas Stafford and Alexei Leonov conducted experiments, exchanged gifts, and even engaged in the world’s first international space handshake – a symbol of shared peace and prosperity for both superpowers. Image 2: Thomas Stafford and Alexei Leonov shake hands on the Apollo-Soyuz mission Apollo-Soyuz marked an effective end to the US-USSR ‘Space Race’ (discussed in Part I of this series), and would lead to successor programmes, including a series of missions where American space shuttles would send astronauts to the Russian space station Mir, and eventually the building of the 21st-century International Space Station (ISS). Science seemed capable of forging cooperation amidst the greatest of disagreements, transcending our human borders and divides. Frank Drake, the designer of the Arecibo Message, was filled with optimism, hoping that his message might herald the beginning of a new age, marked by united scientific discovery and unparalleled human growth. He triumphantly declared to the Cornell Chronicle on the day of its transmission that “the sense that something in the universe is much more clever than we are has preceded almost every important advance in applied technology. SCIENTIFIC SPHERES OF INTEREST Yet this rose-tinted vision of science as the great mediator perhaps has a few more cracks in it than its advocates like to admit. Even at the height of Nixon’s Cold War détente, science was not pure intellectual collaboration. Henry Kissinger, Nixon’s National Security Advisor and later Secretary of State, pioneered ‘triangular diplomacy’, the art of playing adversaries off against one another with alternating threats and incentives. In later years, he would declare that “it was always better for [the US] to be closer to either Moscow or Peking than either was to the other”. And as he opened channels of communication with China, it was science that would pave the way for a stronger relationship. In the Shanghai Communique negotiated on Nixon’s 1972 trip to China, both sides “discussed specific areas in such fields as science [and] technology…in which people-to-people contacts and exchanges would be mutually beneficial [and] undert[ook] to facilitate the further development of [them].” Scientific collaboration (often manipulated by spy agencies from the CIA to the KGB) was the carrot beside the military stick – a central part of building alliances in a world of realpolitik. To Kissinger and his colleagues, the world was to be divided into Image 3: US President Richard Nixon shakes hands with CCP Chairman Mao Zedong in China in 1972 spheres of influence, even in times of peace – and science was best used as a way of strengthening and shoring up your own prosperity. It is a realist view of science diplomacy that continues to this day, with US Secretary of State Hillary Clinton noting in Image 4: Chinese Foreign Minister Wang Yi meets with his Cambodian counterpart Prak Sokhonn in September 2021, pledging additional aid and vaccine doses. 2014 that “educational exchanges, cultural tours and scientific collaboration…may garner few headlines, but… [can] influence the next generation of U.S. and [foreign] leaders in a way no other initiative can match”. To both Clinton and Kissinger, science is an instrument of foreign policy, whether deployed overtly in winning over current governments or more subtly in shaping the views of future ones. For them, amidst competing interests and simmering tensions, we ignore science’s soft power at our own peril. Just look at China’s distribution over Sinovac COVID-19 vaccines in the pandemic. In October 2020, January 2021 and September 2021, Chinese Foreign Minister Wang Yi went on tours of Southeast Asia, promising vaccine aid while pushing closer connections between China and the rest of Asia. Last year, it was estimated that China had promised a total of over 255 million vaccine doses – a key step in building stronger economic and military ties in an increasingly tense region. Indeed, in mid-2021, just as concerns about Chinese vaccine efficacy grew, US President Joe Biden announced “half [a] billion doses with no strings attached…[no] pressure for favours, or potential concessions” from the sidelines of a G7 Summit. Secretary of Defence Lloyd Austin travelled across Southeast Asia. In the the Philippines he renewed a military deal just as a new shipment of vaccines was announced – a clear indicator of the linkage between medical and military diplomacy, something reinforced when Vice President Kamala Harris landed in Singapore later that year to declare the US “an arsenal of safe and effective vaccines for our entire world.” Australia is key to vaccine diplomacy too. On his visit here earlier this year, US Secretary of State Antony Blinken made a point of visiting the University of Melbourne’s Biomedical Precinct to talk about COVID-19, declaring on Australian television that our nation was central to “looking Image 5: United States Secretary of State Lloyd J Austin III meets with Philippines President Rodrigo Duterte in July 2021 for negotiations on renewing the Visiting Forces Agreement at the problems that afflict our people as well as the opportunities…dealing with COVID…[in] new coalitions [and] new partnerships.” These views are backed up locally too. Sitting down for an exclusive interview with OmniSci Magazine last year, Dr Amanda Caples, Lead Scientist of Victoria, was keen to characterise her work in terms of these developments, reminding us that Victoria had been key to “improving the understanding of the immunology and epidemiology of the virus, developing vaccines and treatments and leading research into the social impact of the pandemic”, and emphasising Australia’s national interest, declaring that “global policymakers understand that a high performing science and research system benefits the broader economy…science and research contribute to jobs and prosperity for all rather than just the few.” Science, it seems, whether in vaccines, trade or exchanges, just like fifty years ago, is again to be a key tool for grand strategy and national interests. Image 6: Dr Amanda Caples, Lead Scientist of Victoria ARGUMENTS AND ARMS But perhaps even this might be too optimistic an outlook – for that simmering balance of power occasionally boils over. We need only to look at what happened when the détente of Nixon and Brezhnev was dashed to pieces with the Soviet invasion of Afghanistan in 1979. The policy was roundly condemned as sheer naïveté in the face of wily adversaries, with President Ronald Reagan later describing détente in a radio address as “what a farmer has with his turkey – until Thanksgiving Day”. Science was the first target for diplomatic attacks. After the invasion, Senator Robert Dole (R-KS) launched legislation barring the National Science Foundation from funding trips to the USSR. And the push seemed bipartisan, with Representative George Brown Jr. (D-CA-36) proposing a House Joint Resolution enacting an immediate “halt [to] official travel related to scientific and technical cooperation with the Soviet Union”. Image 7: Russia’s cosmonauts board the ISS on 18th March 2022, shortly before Russia ends its participation in the program Now, as we face war on the European continent, even the ISS – the descendant of Apollo-Soyuz’s seemingly-apolitical scientific endeavours – seems to be falling apart spectacularly. On April 2 this year, Roscosmos, the Russian space agency, announced that it would be ending its participation in the ISS program, demanding a “full and unconditional removal of…sanctions” imposed over the Russian invasion of Ukraine. Earlier in the year, Roscosmos’ Director General Dmitry Rogozin openly suggested on Twitter that the ISS being without Russian involvement would lead to “an uncontrolled deorbit and fall [of the station] into the United States or Europe”, alluding to “the option of dropping a 500-ton structure [on] India and China.” Rogozin’s threats became even more pronounced as the war continued, with Roscosmos producing a video depicting Russia’s two astronauts on the station not bringing NASA astronaut Mark Vande Hei back to Earth with them (American astronauts primarily go to and return from space via Russian Soyuz capsules). Shared by Russian state news, its chilling final scenes show the Russian segment of the ISS detaching too, with Vande Hei presumably left to die in space aboard the station. Such attacks need not remain rhetorical, either. Scientific advancements have long been tied to weaponry and defence systems, with mathematicians and physicists from John Littlewood to Richard Feynman involved in making bombs and ballistics in times of war. Even Arecibo, that bastion of a united humanity, began life as a Department of Defence initiative detecting Soviet ballistic missiles. Today, the AUKUS defence partnership – one of the most significant Indo-Pacific defence developments in recent memory – centres on sharing nuclear submarine science and technology, promising scientific cooperation regarding “cyber capabilities, artificial intelligence, quantum technologies, and additional undersea capabilities”. Even if induced by factors beyond our control, such weapons-based science is a far cry from the pacifist ideals of the Arecibo message. Thus, perhaps this messy reality is more central to our science than we like to admit. From the ISS to Australia’s waters, science still is intertwined with conflict and frequently co-opted by geopolitical actors in times of renewed aggression. Science at its worst is mere weaponry. But at its best, it speaks to something greater. HOPE IN THE DARKNESS In June 1977, the world was far from diplomatically stagnant. From the rumblings of Middle Eastern peace (what became the Camp David Accords) to new hopes of nuclear arms reduction, US President Jimmy Carter had quite the array of diplomatic dilemmas to consider. But amidst all that cold politics, he penned a letter to be sent on board the spacecraft Voyager, now the furthest manmade object from our solar system, declaring “We are attempting to survive our time so we may live into yours…This record represents our hope and our determination, and our good will in a vast and awesome universe.” And if this magazine has purported to speak to the ‘alien’ – far removed from our human lives - then perhaps we have discovered quite the opposite: that looking out up there is so much about looking in down here. Science presents a way we can look out at the alien and see ourselves – “survive our time…into yours”, finding a path ahead reflected in the inky blackness above. We are often constrained by time and circumstance, forced in the face of nefarious actors to compromise our idealism and use science as a mere weapon or tool. Discovery for discovery’s sake is frequently the first casualty when battle lines are drawn and aggression begun, and too often the political pessimism of the scientist can seem overpowering. But if the stories of broken détentes, diplomatic realpolitik and weaponised technology have made it all feel inevitable, then perhaps it is worth considering the story we began with, looking up into the night sky and remembering that somewhere amidst the stars is a tiny warble in the electromagnetic spectrum. Long after the funds and papers that forged it have faded away, after the people who wrote it have perished, it will continue. In its odd combination of ones and zeroes, it will represent humanity: our contradictions and our fears, our constant foibles and infighting, but also our occasional glimpses of a future beyond them. A signal…a reminder that when the times, the people Image 8: President Jimmy Carter’s message, sent aboard Voyager, the furthest man-made probe from Earth and the ideas line up just right, science can be the torchbearer for something greater. Something so rare that amidst all the ills of the world, it often seems non-existent, and so powerful that over two millennia ago, Aeschylus himself deemed it the very thing given to humanity by Prometheus to save us from destruction – the ideal that transformed us from mortals fixated on ourselves and our deaths to a civilisation capable of great things. “τυφλὰς…ἐλπίδας”, he called it: blind hope. A handshake in a capsule. A life-saving jab on board a ship. A binary message in a bottle, out among the stars. Fleeting images – not of what we are, but of what we can be: visions of blind hope, that sheer belief that we can grow past our worst violent impulses and reach out into the great beyond. Maybe it’s foolish. Maybe it’s naïve. But, on a brisk fall evening, looking out at a sky full of stars, each one more twinkling than the last, it’s easy to stop and imagine…maybe it’s the only thing that matters. Andrew Lim is an Editor and Feature Writer with OmniSci Magazine and led the team behind the Australian Finalist Submission to the New Arecibo Message Challenge. Image Credits (in order): National Atmospheric and Ionosphere Centre; National Aeronautics and Space Administration; National Archives Nixon White House Photo Office Collection; Kith Serey/Pool via Reuters; Malacanang Presidential Photo via Reuters; The Office of the Lead Scientist of Victoria; AP; National Aeronautics and Space Administration Previous article Next article alien back to

  • Spirituality and Science | OmniSci Magazine

    < Back to Issue 2 Spirituality and Science Science is limited by the philosophies which govern it. Common thinking is that science is a rigid, cold and largely academic field which sneers at the domain of spirituality. I posit that one must move beyond this point of view in order to do good science, and to find the true aims and values of the discipline. by Hamish Payne 10 December 2021 Edited by Irene Yonsuh Lee & Khoa-Anh Tran Illustrated by Quynh Anh Nguyen When I was fifteen, I thought that I could thwart my English teacher. He had given us homework that was simple enough; discuss with our families whether true altruism exists. I did not have this discussion with my household but instead hosted the debate in my head, coming to a measured conclusion. However, the privacy of my argumentation showed the next day when my teacher asked me to share. He immediately suggested that I had only been thinking by myself and had not welcomed others into my discussion. This is not my most interesting story, but it did teach me something important: every thought that I have had contains traces of me. Even when I am fiercely debating contrary viewpoints on a subject, even when I am having my most dissonant thoughts, it is my own voice against which I argue. Whenever I have drawn my pen across the page, I have been leaving my fingerprints in the ink. At the time, these traces of me made me very uncomfortable. I have always heard that the beauty in science is that it does not matter if it is considered in isolation or in consultation with others; its facts and its theorems are invariant. This vision of science as a haven for unchanging logic was popularised by Descartes. For the cartesian, the body is split from nature, allowing one to consider the latter more sterilely. But the mind is also split from the body, and our talents, ambitions and passions are split apart in our minds. This thinking for centuries has spurred enormous strides forward in physical technology and has made humanity feel in control of our environment largely because the cartesian divide heralds natural determinism wherein each phenomenon has a direct and exploitable cause[1]. However, there is no room for individual expression in the Cartesian framework – no place for perception, experience, or spirituality. Though my retelling is likely apocryphal, the story of Galileo serves in my mind as a symbol of this divide. From the instant Galileo sought to place the sun at the centre of our solar system, he toppled the heavens and was thus persecuted by the purveyors of spirituality. The persecution of both the scientist and his heliocentric principle barred faith and belief from the scientific process and hence placed reason and logic at its centre. Yet it should not be forgotten that the clergy of the Roman Inquisition paid Galileo in kind and forbad the scientist a spirit. But what are the consequences of taking such a divided view of nature? When I hear people talk about scientists today, they treat the scientist not as someone who lives but as someone who develops rules about life. Scientists must never strive for innate beauty, but for inert truth, guided by cold logic – even Oscar Wilde wrote that “the advantage of science is that it is emotionless”[2]. As a continuation of Galileo being branded apostate, the scientist has been stripped of the right to ambiguity in his explanations, and uncertainty in his world view. If science is not complete, it is deemed a failure. But this is ludicrous. Any scientist must know and accept that the cartesian split neglects certain aspects of the world – those properties of a system which emerge only when all its parts are combined. Moreover, nature still eludes science on a very deep level. For example, there is still no widely accepted philosophical explanation of quantum mechanics, no ability to predict the chaotic flow of a surging river, no profound understanding of the synchronisation of heart cells. Science is so woefully incomplete and incapable of dealing with the sheer scale of disorder in the world that most real-world systems must undergo several fundamental simplifications to be modelled, lest they take years to understand. And when things are cut apart, it becomes even more difficult to stitch them back into the complete picture. Then what remains of the aims of science if it is only an imitation of nature – a painting with no colours, shadows on the wall? When I ask myself this question, I find Feynman’s words echo back in my head: doing science is no more than thinking about “the inconceivable nature of nature”[3]. Science seeks to connect us with nature. It is not about disassembling it and organising it, splitting it into more and more isolated pieces, but about marvelling at the whole system, attempting to let it all sit in your mind - to look at the dancing shadows and understand what is casting them, enjoying the dance all the same. Likewise, in his book, Nonlinear Dynamics and Chaos, Steven Strogatz humorously lists life under the list of unexplored scientific domains[4]. He does not relegate, however, science to its usual, removed, and sterilised place in this. Instead, he suggests that nature is so complex, that one cannot help but marvel at it with no real hope of controlling or quantifying it. I argue that these two scientists are just as much talking about what it means to be spiritual as scientific. To be spiritual is to try relentlessly to understand our life and our world and their relationship, even as they mercurially shift and change. Simply put, spirituality arises from a profound connection with nature. For example, the unity of the mind and the natural world is the bedrock of Eastern mysticism. The discipline seeks to connect the two through considered meditation and direly avoids their division. Such is highlighted by the Buddhist philosopher Asvaghosha; “When the mind is disturbed, the multiplicity of things is produced, but when the mind is quieted, the multiplicity of things disappears.” Western religions similarly connect nature and the spirit. Polytheistic traditions like the ancient Greek and Roman ascribe to their gods an element of the world each to control. The communication of the individual with a god is thus the interaction of the individual with the natural world. Similarly, the God of Judaism, Christianity and Islam is often present in awesome acts of nature. Particularly in the oldest parts of the Bible, God is seen to communicate through natural disasters and great floods and great fish and plagues and pestilences. Whilst I must admit that this analysis is somewhat superficial, it certainly illustrates the place nature holds deep in our minds and mythology. In an overwhelming number of cases, nature begets spirituality. Science is likewise born of nature and, for me at least, is therefore spiritual. But the value in reclassifying science as something spiritual as well as logical is not argumentation for naught. The scientist who is spiritual and fully connected with nature is better equipped than any. Guarding the connection between the individual and nature as sacred allows us to question our world on a more fundamental, truer level. Take as an example a question I hear often in my studies of physics: “Why is this theorem true?” Whilst it sounds reasonable enough, this type of question leads its asker down a reductionistic rabbit hole, in pitting mathematics against nature. Instead of seeing mathematics as a tool to describe nature, nature is seen as a product of mathematics. The rich physical world is reduced into rigidly true or false statements when we know such dichotomies are severely inept in the real world. Perhaps the scientist who is more holistically, spiritually connected with nature would be prompted to ask instead: “How true is this theorem to the world?” One does not have to look far to see how this subtle shift in approach to science can be incredibly successful. A fundamental principle of quantum physics states that matter is simultaneously particle-like and wave-like. This ambiguity in physical explanation, which would not be allowed from a cartesian point of view, is acceptable because it matches completely what is observed rather than attempting to reduce nature into the language of mathematics. Werner Heisenberg even wrote that “we cannot speak about atoms in ordinary language”, demonstrating the need for scientific holism. Approaching scientific discovery from a spiritual perspective allows us to move beyond the constraints of a reductive language. Likewise, studying science increases our spiritual relationship with nature. Albert Camus, perhaps rather unknowingly, said much the same thing in his unpublished novel, La Mort Heureuse. The protagonist, Mersault, on the brink of his death, says of the red, sunset clouds: “When I was young, my mother told me that [the clouds] were the souls of the dead who were travelling to Heaven. I was amazed that my soul was red. Now I know that it’s more likely the promise of wind. But that’s just as marvelous.”[5] What is spiritual is natural. Intellectual curiosity is rooted in the physical world, even as it changes and develops, becomes completely chaotic and throws more and more unanswerable questions in our faces. Science persists not because it seeks to provide answers to all of life’s questions, but because it provokes the mind into deeper questioning and, in that, deeper connection with nature and its ineffable, uncapturable beauty. The most marvellous thing about taking this perspective is that the science I do becomes more personal and ignites a stronger passion. I no longer must worry about the traces of myself; they are a necessary part of my understanding of the world and have shown me that, although science is “emotionless” in its methodology, it should not be so in its execution. Science is not spiritual because it precludes knowledge that is born from blind faith, but because it pushes knowledge to somewhere that is deeply human and that is beyond faith. References: [1] Fritjof Capra. 2000. The Tao of Physics : An Exploration of the Parallels between Modern Physics and Eastern Mysticism. 35th Anniversary Edition. Boston: Shambhala. [2] Wilde, Oscar. (1890) 2018. The Picture of Dorian Gray. New York, Ny: Olive Editions. [3] Feynman, Richard. 1983. “Fun to Imagine with Richard Feynman.” Documentary. BBC. [4] Strogatz, Steven H. (2014) 2019. Nonlinear Dynamics and Chaos : With Applications to Physics, Biology, Chemistry, and Engineering. Second. Boca Raton: Crc Press. [5] Camus, Albert. (1971) 2010. La Mort Hereuse. Paris: Gallimard. Previous article back to DISORDER Next article

  • Death of the Scientific Hero

    < Back to Issue 3 Death of the Scientific Hero By Clarisse Sawyer 10 September 2022 Edited by Ruby Dempsey Illustrated by Quynh Anh Nguyen Next Trigger warning: This article mentions racism, sexism and misogyny and death. As a kid I was obsessed, like most kids, with animals of any kind. I would spend hours at a time scouring the beach for shells, getting sunburnt watching lizards, and tentatively feeding the praying mantises I caught, watching with morbid fascination as they hunted and dismembered the unfortunate crickets. It was only natural that I soon became interested in science. The long days of summer holidays were spent pouring over children’s encyclopaedias and watching David Attenborough documentaries. Through David Attenborough, I discovered two incredibly influential scientists - the co-discoverers of evolution, Charles Darwin, and Alfred Wallace. I idolised them, in particular, Wallace. As a shy child, who avoided the limelight like the plague, I had a natural inclination to root for the underdog, and Wallace was presented as such. Wallace was, in contrast to Darwin, much poorer, much more humble, and received much less credit for the theory of evolution than his co-discoverer Darwin. In my developing brain, Wallace took on the status of hero. I would chatter incessantly about him. I developed an interest in insects and butterfly collecting because he was a lepidopterist. I am sure my parents found me insufferable, but they hid their frustrations well, through subtle eye rolls and conversation changes, because they were happy to see me interested in science. So for my 11th birthday, my Dad bought me a book of Wallace’s letters from his time spent as a butterfly collector in the Malay Archipelago. The book was a lot drier than an 11 year old would have hoped for. Most of it was just taxonomy, peppered with the odd personalised comment complaining about the heat. But there was one passage which stood out to me in particular. A passage in which he describes shooting a “wild woman”, upon mistaking her for an orangutan in the forest canopy. In this section he details taking the baby she carefully carried on her back, and raising it as his own “n-word baby”. He promptly taxidermied the mother, with the intention of selling her remains to a wealthy private collector in England7. It was at this point I stopped reading. At 11, there was no way I could tell this was just an incredibly bad taste joke, and that in reality Wallace had actually shot a peculiar subspecies of orangutan, and not a Malaysian woman carrying her child. At 11, I believed my hero would kill me, if I wasn’t half white, if I wasn’t so light skinned, if I didn’t wear clothes, if I didn’t speak English. I would wonder for years afterwards: how brown would I have to be? To be plastinised, taxidermied, sold to some rich collector to sit in a sterile glass cabinet, at the back of some ex nobleman’s mansion. The passage ruined Wallace for me, but not science. Sometimes I wonder, if my passion for science was only marginally less, would I still be in science? I don’t know. For every child who is only mildly deterred by the racism or sexism of their former heroes, surely there is one child whose passion slowly fades, until the only time it is mentioned is by anxious mothers pushing their children to study medicine. I lost my hero, a precedent for who a scientist should be, in addition to developing a paranoia. A paranoia that if I were to start idolising another white, male, historical, scientific figure, I would be met with the same realisation that he would’ve despised me. And I haven’t been able to find a new hero since. Despite there being numerous people of colour, and women in science for a millennia before me, they weren’t the ones promoted to me, or if they were, I found them unrelatable save for their gender or the colour of their skin. They were people who were, 99% of the time, hard working to a fault, such as Marie Curie. Often this diligence was presented as being a detriment to their happiness. So my decision to study science, like many other women and people of colour, was also a decision to be my own precedent for what a scientist should be. While this is empowering, it is difficult not to envy those, like the privileged archetype of a white man, who might be able to draw confidence and inspiration from the figures in the preliminary pages of scientific textbooks. Whilst the majority of them may prove unrelatable, the sheer quantity would ensure that at least one would be a sympathetic character, in stark contrast to the singular, tokenistic entries on historical non-white or female scientists in such text books. But does it really have to be this way? Why should anyone have to feel alienated by scientific history? Why are there not more diverse heroes for us to fall back on? At the crux of my alienation from Wallace, and scientific history more generally, was deceit, more specifically what I perceived as lying by omission. The initial presentation of scientific figures such as Wallace by media, institutions and the like is so sympathetic and devoid of grisly details, that upon discovering the multifaceted nature of these individuals, I experienced a kind of historical whiplash. A scientific education is often presented as being objective. What you are taught in a classroom, at least at a primary or secondary level, is not meant to be subject to much nuance or interpretation. Now, when this concerns science itself, it is a non-issue, because it is true, for instance, that chromosomes are made of DNA, or that the first electron shell of an atom contains 2 electrons. The issue is that the perception of objectivity carries over into the way science history is taught. Unfortunately, this teaching is unavoidably subjective. Teachers and institutions often present positive anecdotes about scientists' hobbies and personal lives. A teacher may share for instance, an endearing fact about the influential French palaeontologist, Georges Cuvier, that he became as knowledgeable in biology as university trained naturalists by the age of 126. However, said teacher may neglect to mention the fact that after her death, Georges Cuvier dissected and taxidermied Sarah Baartman , a South African woman of the Khoisan tribe, and paraded her as a freak for the English public5. Her plastinated body remained on display at the Museum of Manin Paris until 19744. In this example, it would be impossible to say that the teacher’s presentation of Cuvier was objective. Choosing to share the nicest facts about a scientist, to make them appealing to your audience, while neglecting the ugly truths,is at best, irresponsible, and at worst, lying by omission. .Abhorrent actions, such as Cuvier’s treatment of Baartman’s corpse, a woman with whom he had danced and conversed with before her death, are treated as unnecessary details in objective scientific history, as they do not pertain to Cuvier’s scientific discoveries. However, equally unnecessary details, such as Cuvier’s early aptitude for biology, are peppered into school curricula liberally. However, it would be unfair to say that the primary reason why natural history is taught in this way is because of conscious racism and sexism. There are a multitude of explanations for why educators teach like this. Educators may choose to include only the nicer traits of scientific figures, in part perhaps because they do not want to risk disengaging students with affronting subject matter. Further, the morbidity and the racism of scientific history is not exactly appropriate content to teach to younger children. Precedent also plays a role in the way in which natural history is taught. Teaching natural history in an unbiased and inclusive fashion would require rewriting a lot of material. Educators would also have to reevaluate their own personal perceptions of historical figures, which is a difficult task. For instance in Australia, the textbooks A Short History of Australia2 and The Story of Australia3, which were staples of Australian high school history classes for decades, are white-centric stories of Australian exploration, which gloss over perturbing historic details such as massacres of Indigenous peoples. While teaching scientific history in a fair, unbiased and age appropriate manner might seem like an impossible task, there are a variety of small steps educators can take towards this end goal. A strong start would be the following; if teachers decide to include personal details about famous scientific figures, they should seek to include both positive and negative anecdotes, which frame negative actions in a disapproving light. The negative anecdotes serve to ensure that students don’t get ‘whiplash’ as they pursue their education, and also serve to show that modern science does not condone or approve of these actions. In the case of younger students, it is best for teachers to avoid talking about triggering topics, so teachers should teach scientific history from an objective standpoint sans personal details. Teachers also should, as part of their responsibilities as an educator, seek out alternative historical perspectives which challenge their own preconceived notions. And educational institutions should offer professional development courses which provide educators with a more balanced view on scientific history. These actions would help eliminate any subliminal biases teachers might have whilst teaching scientific history. And why are there not more diverse heroes for us to fall back upon? Lack of equal opportunity for marginalised groups in Western society for most of history and the systemic erasure of their contributions is an obvious reason, however through relying on secondary, colonial sources for information, instead of delving deeper into primary sources, educators and institutions inadvertently gloss over scientific contributions by marginalised groups. For example, the contributions of Indigenous Australian scientists and explorers are often ignored by museums. Many famous white explorers of Australia, such as Thomas Mitchell, Charles Sturt and Alexander Forrest worked closely alongside Indigenous guides, who helped navigate territory, and point out items of scientific interest, and their names are actually often acknowledged in primary sources1. For instance, one of explorer Thomas Mitchell’s chief guides, Yuranigh, is mentioned extensively in Mitchell’s personal accounts of his expeditions, and was acknowledged posthumously by Mitchell with a grave and monument1. These people, who were explorers in their own right, have largely been relegated to the footnotes of history and museums, in particular after the publications such as the aforementioned textbooks A Short History of Australia, and The Story of Australia in the 1950’s, which deliberately omitted Indigenous contributions to white Australian exploration in order to sell the false narrative of terra nullius. Luckily, through researching primary sources further, historians, educators and curators will be able to change the narrative, and shed light on these marginalised scientists. But what of scientific heroes? How is it possible to keep students engaged without the more personal aspects of science, given that many scientific figures will have to be cut from curriculums, at least for younger students?My answer to that would be to find new heroes. History is littered with people who made significant contributions without committing atrocities. And who knows, maybe in the void left by problematic figures, space could be cleared for more diverse heroes, the kind removed from history textbooks, such as Yuranigh; an exciting prospect. And yet, there is an unavoidable anguish in throwing out the old in favour of the new. Coming to terms with the fact that the people we idolised were terrible people is no easy feat. But all we can endeavour to do is to portray scientific figures as they were. To portray all aspects of these figures, good and bad, or none at all, and hopefully develop a new history, a new tradition, one that is inclusive, one for which everyone can be proud of and take solace in. References 1. Watson T. Recognising Australia's Indigenous explorers [Internet]. researchgate.net. 2022 [cited 19 May 2022]. Available from: https://www.researchgate.net/publication/321579451_Recognising_Australia's_indigenous_explorers 2. Scott E. Short History of Australia. Forgotten Books; 2019. 3. SHAW A. The story of Australia. London: Faber; 1975. 4. Parkinson J. The significance of Sarah Baartman [Internet]. BBC News. 2022 [cited 19 May 2022]. Available from: https://www.bbc.com/news/magazine-35240987 5. Kelsey-Sugg A, Fennell M. Sarah Baartman was taken from her home in South Africa and sold as a 'freak show'. This is how she returned [Internet]. Abc.net.au. 2022 [cited 19 May 2022]. Available from: https://www.abc.net.au/news/2021-11-17/stuff-the-british-stole-sarah-baartman-south-africa-london/100568276 6. Georges Cuvier [Internet]. Britannica Kids. 2022 [cited 19 May 2022]. Available from: https://kids.britannica.com/students/article/Georges-Cuvier/273885 7. Wallace A, Van Wyhe J, Rookmaaker K. Letters from the Malay Archipelago. Oxford: Oxford Univ. Press; 2013. Previous article Next article alien back to

  • Understanding The Mysterious Science... | OmniSci Magazine

    Understanding the Mysterious Science of Sleep By Evelyn Kiantoro Sleeping is just something we do at the end of the day, but why? It’s a daily routine we rarely question! Check out this article for a brief review of the current research out there on sleep and dreams. Edited by Katherine Tweedie, Juulke Castelijn & Niesha Baker Issue 1: September 24, 2021 Illustration by Casey Boswell “Today I don’t feel like doing anything, I just wanna lay in my bed,” sings Bruno Mars in The Lazy Song. That is exactly what our inner narrative says every Monday morning, right? After the long weekend, having fun partying or catching up with some work, there is nothing worse than getting back into the weekday grind. All we want is an eternity of rest and sleep because – for the majority of us – sleep is a way to relax; it takes us away from the stressful reality of life. However, our physical condition when we sleep suggests that it is not actually very safe. When we sleep, we are in a mysterious state; we lie down and are vulnerable to predators without any defence. To minimise the dangers of sleeping, humans built houses that provide warmth and shelter from the weather and protection from predators. But sleeping is seen in various other lifeforms, not just us humans – and species that live in the wild experience conditions that are far more dangerous. Dreams are an even bigger mystery in the science of sleep; they do not seem to have any significant benefits, and their purpose is largely unknown. However, as with everything that is passed on from generation to generation, sleep and dreams must have a significant evolutionary advantage for our fitness and survival. Due to the different obstacles and routines faced by various species, different species sleep in different ways. Generally, predatory animals such as humans can sleep for long periods of time (1). Conversely, prey animals are constantly vigilant; instead of sleeping for a long time, they only rest for short periods (2). A particularly interesting example are dolphins and seals, who have evolved to keep half of their brain “asleep” while the other is “awake” during sleep (3). This shows us that sleep really is important for our survival, and that various organisms have even adopted mechanisms to combat obstacles to sleeping. So, the cost of sleeping must be worth it, right? The answer is “yes” – but scientists are unsure of exactly why. Why do we sleep? Various theories in literature on the purpose of sleep have been broadly categorised into two theories: the adaptive and restorative theories. One of the reasonings behind the adaptive theories proposes that creatures that are inactive at night have increased chances of survival due to a lower risk of injury (4). Another perspective suggests that humans sleep at night to conserve energy for the day, when it is more efficient to hunt for food (5). This theory has also been supported by the fact that humans have a 10 per cent decrease in metabolism during sleep (6). However, both theories were proposed in relation to our ancient lifestyle when we needed to physically hunt for food. Looking at our present lifestyle, this reasoning may not be as applicable – but it is still embedded in our system. There are other theories that explore the reasoning behind sleep from the perspective of restoration. The restorative theory speculates that sleep allows us to repair cellular components that were used throughout the day, as many important growth hormones are shown to be released during sleep (7). This theory is also supported by the most widely accepted reasoning for why we sleep, which is that sleep is necessary for the growth and maintenance of the brain’s structure and function, and that it is crucial for optimising memory consolidation (8, 9). Sleep also affects other physiological aspects, such as immune function, endocrine function, cardiovascular health and mood (10, 11, 12) . Sleep disorders are shown to be associated with cardiovascular disease, and sleep reportedly enhances immune defences against pathogens. The fact that there are various theories explaining why we sleep shows that there is no single perfect explanation. Regardless of why we sleep, we still get into bed at the end of the day. This is mainly because of our circadian rhythm, which controls our desire for sleep. Our circadian rhythm is controlled via the hypothalamus: an area at the centre of our brain that receives sensory inputs from various parts of the body. During sleep, the hypothalamus receives input from our eyes, which detect light levels (13). When we are exposed to high levels of light in the morning, the circadian rhythm promotes wakefulness (14). However, at night, when there is less exposure to light, the circadian rhythm promotes sleep due to the increase in the production of the sleep-regulating hormone, melatonin (15). Even though we have a central control system that regulates when we sleep, there is still a large variation in sleeping time among humans; some people sleep for only five hours, and others sleep for up to ten or more (16). Sleep duration is affected by factors such as physical and social environment, diet, activity, body mass index, comorbidities and mental health (17). Despite the contributions of lifestyle differences, some studies have shown that human sleep duration and timing is also influenced by genetic factors but is regulated by the circadian rhythm and brain activity (18). Currently, little is known about the specific genes and genetic mechanism involved in sleep duration, and more research is still being done in the area (19). These factors could explain why people often feel sleepy throughout the day, in addition to the variation in sleeping patterns in the population. However, as is so often the case in science, there is no one specific factor that may result in differences within the population – instead, a combination of these factors is likely to be responsible. The phases of sleep Did you know that there are different kinds of sleep? All humans go through two different sleep phases: non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep (20). NREM takes up approximately 75–80 per cent of our total sleep duration, whereas REM takes up 20–25 per cent (21). Sleeping normally progresses from NREM 1–4 through to REM, and this cycle occurs four to five times each night (22) - for more details on sleep phases, check out Table 1! Most of the restoration processes in the body are believed to take place during NREM 3, as well as during REM. However, one particular question often stands out when it comes to sleep stages: when do we dream? Dreams: what are they, anyway? While there are some exceptions, it is widely believed that dreaming most frequently occurs when a person is in the REM stage of sleeping (25). When some individuals sleep, they sometimes have difficulty distinguishing between reality and the dreaming state. This can be explained by the fact that we are consciously aware in dreams, and we often have perception and emotion (26). Dreams are in fact richer than our consciousness – they can create scenarios that may be impossible in our conscious reality (27). They are highly visual, contain sounds and are often an experience instead of a mere thought (28). Interestingly, the striking similarities between consciousness and dreams may indicate that dreams reflect the organisation and function of our brain (29)! Various evidence has shown that dreams are more likely to be a result of our imagination. One argument states that blended characters and the bizarre properties of our dreams are more likely to be produced by our imaginations, as these are not something an individual would experience in the conscious state (30). Furthermore, the fact that dreams rarely contain smells or pain may be a result of us having difficulties imagining those sensations while awake (31). Looking at dreams as a higher form of our imagination may explain our uncertainty, poor recall, disconnection from the environment and lack of control over the situation while dreaming (32). However, it is interesting to keep in mind that our imagination is a result of the knowledge we already have. This knowledge is based on what we learn from our conscious reality, explaining why our dreams sometimes feel so realistic. An unsolved mystery Did you realise that sleep is one of the few activities you were not taught to do? As newborns, we only know how to digest and excrete food, breathe, show emotions and sleep. We digest food as an energy source; we excrete food to prevent the build-up of toxic substances; we breathe to supply our organs with oxygen; and we show emotions to communicate how we feel. So why is sleep one of these essential activities? And why is dreaming such a universal human experience? Despite extensive research, the answer remains buried in us like a secret in a mystery novel. This answer is not so far away – but unfortunately for us, it is not the type of book you can finish in a day. Instead, it is one with an infinite number of chapters. References: 1, 2. Purves, Dale, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, and Leonard E. White, Neuroscience (5th Edition). Sunderland, MA: Sinauer Associates, 2012, 627. 3. Siegel, Jerome M., “Do All Animals Sleep?”, Trends in Neurosciences 31, no. 4 (2008): 208-213. doi: 10.1016/j.tins.2008.02.001. 4. Siegel, Jerome M., “Sleep Viewed as a State of Adaptive Inactivity”, Nature Reviews 10, no. 10 (2009): 747-753. doi: 10.1038/nrn2697. 5. Freiberg, Andrew S., “Why We Sleep: A Hypothesis for an Ultimate or Evolutionary Origin for Sleep and Other Physiological Rhythms,” Journal of Circadian Rhythms 18, no. 1 (2020): 1-5. doi: 10.5334/jcr.189. 6, 7, 8, 13, 15, 22, 23, 25. Brinkman, Joshua E., Vamsi Reddy, and Sandeep Sharma, Physiology of Sleep (Treasure Island, FL: StatPearls, 2021). 9. Rasch, Bjorn, and Jan Born, “About Sleep’s Role in Memory”, Physiological Reviews 93, no. 2 (2013): 681-766. doi: 10.1152/physrev.00032.2012. 10. Leproult, Rachel, and Eve Van Cauter, “Role of Sleep and Sleep Loss in Hormonal Release and Metabolism”, Endocrine Development 17 (2009): 11-21. doi: 10.1159/000262524. 11, 14, 24. Jawabri, Khalid H., and Avais Raja, Physiology, Sleep Patterns. Treasure Island, FL: StatPearls, 2021. 12. Ahmad, Adeel and S. Claudia Didia, “Effects of Sleep Duration on Cardiovascular Events,” Current Cardiology Reports 22, no. 4 (2020): 18. doi: 10.1007/s11886-020-1271-0. 16, 19. Keene, Alex C., and Erik R. Duboue, “The Origins and Evolution of Sleep,” Journal of Experimental Biology 221, no. 11 (2018): 1-14. doi: 10.1242/jeb.159533. 17. Billings, Martha E., Lauren Hale, and Dayna A. Johnson, “Physical and Social Environment Relationship with Sleep Health and Disorders,” Chest 157, no. 5 (2020): 1305-1308. doi: 10.1016/j.chest.2019.12.002. 18. Porkka-Heiskanen, T., “Sleep regulatory factors,” Italiennes de Biologie 152, no. 2-3 (2014): 57-65. doi: 10.12871/000298292014231. 20. Miyazaki, Shinichi, Chih-Yao Liu, and Yu Hayashi, “Sleep in Vertebrate and Invertebrate Animals, and Insights Into the Function and Evolution of Sleep,” Neuroscience Research 118 (2017): 3-12. doi: 10.1016/j.neures.2017.04.017. 21. Troynikov, Olga, Christopher G. Watson, and Nazia Nawaz, “Sleep Environments and Sleep Physiology,” Journal of Thermal Biology 78, (2018): 192-203, doi: 10.1016/j.jtherbio.2018.09.012. 26, 27. Hobson, Allan J., “REM Sleep and Dreaming: Towards a Theory of Protoconsciousness,” Nature Reviews 10, (2009): 803-813. doi: 10.1038/nrn2716. 28, 31, 32. Nir, Yuval, and Giulio Tononi, “Dreaming and the Brain: From Phenomenology to Neurophysiology,” Trends in Cognitive Sciences 14, no. 2 (2011): 1-25. doi:10.1016/j.tics.2009.12.001. 30. Ichikawa, Jonathan, “Dreaming and Imagination,” Mind & Language 24, no.1 (2009): 103-121, doi: 10.1111/j.1468-0017.2008.01355.x.

  • Existing in an Alien World: Navigating Neurodiversity in a System Built for Someone Else

    < Back to Issue 3 Existing in an Alien World: Navigating Neurodiversity in a System Built for Someone Else By Hazel Theophania 10 September 2022 Edited by Breana Galea and Ruby Dempsey Illustrated by Janna Dingle Next Content warnings: Ableism, mental illness. Have you ever read something that just makes everything click into place? For me, it was that autism is characterised by a difficulty in forming and understanding ‘second-order representations’1. Let me explain: A ‘first order representation’ is the face value, the direct interpretation of an object or event. A ‘second order representation’ is the underlying meaning, the non-literal association with an object or event. Autistic people struggle with the latter. Allistic (non-autistic) people don’t, and for them it’s intrinsic in a large part of communication – nonverbal cues and gestures, sarcasm, undertones, passive aggression, politeness and more complex events like communication of social hierarchy all take place beneath the veneer of explicit communication. They rely on the ability to interpret another’s actions based on extrapolating their perspective. Rather than being automatic for autistic people, doing so is a learned, active behaviour, and one that is taxing to maintain and use. Reading this explanation was epiphanous for me for two reasons: it concisely explained why I and other autistic people I knew had such trouble navigating and communicating in social interactions, and it clarified why conflict and miscommunication arose so frequently. It contextualised and validated the way I experience and understand the world. Autistic communication is direct, predominantly using first order representation. It doesn’t soften effect or hide meaning with subtext; conversely it has difficulty picking up on inference and implication from others. So many times I have answered questions or followed instructions ‘incorrectly’, because I’ve addressed the words and not the implied meaning underneath. Much of boundary setting and emotional communication in social relationships is implicit - are they ‘acting’ interested? Does it ‘feel’ like they are reciprocating? Can you ‘tell’ that they want to be friends? - inability and difficulty in reading those complex second order representations makes navigating those situations painful and confusing. These struggles and anxieties make it much harder for autistic individuals to make and maintain friendships (3). Sedgewick and Pellicano (3) found that both autistic girls and boys report weaker friendships with more conflict than their neurotypical peers. They experience more victimisation, autistic girls especially, from bullying and other relational aggression, and experience far more insecurity around their friendships. The authors identify “both autistic and neurotypical girls alluded to wanting to fit in, but in different ways.” The neurotypical girls in the study were more concerned with securing a place in the social hierarchy – appearing cool and fitting in with the popular crowd - whether through dating or other means. For the autistic girls it was about finding people who actually accepted them as themselves; fitting in was not about adhering to social expectations, but about finding friends where they didn’t have to. Bury and Hedley (5) found much the same issues in analysing the problems autistic people face in the workplace. While the work itself was no more trouble for autistic individuals than their neurotypical counterparts, navigating the social aspects of a workplace drastically increased the stress and drain on autistic employees. Issues can arise from relative trivialities like dealing with food or birthday wishes, up to serious conflicts that jeopardise their employment. The same communication and relational issues that lead to autistic individuals struggling socially can have more serious consequences when the miscommunication and conflict arise when interacting with an authority, such as a boss or supervisor. Problems stem from unclear instructions, not adhering to unwritten or unspoken rules (social and otherwise), interrupting and socialising at wrong times – everything that relies on being able to determine and pick up on implicit communication. In other words, being autistic has career consequences. Now, having anxiety or depression aren’t intrinsic to being autistic (6). They’re not part of the same dysfunction in development. However, something about being expected to negotiate a minefield of implicit communication that others grasp intuitively leads to an extreme coincidence of autism with both anxiety and depression. The social ostracism and punishment for violating rules you’ve never been taught casts a slight shadow over every interaction. The starkly increased incidences of bullying and victimisation autistic youth go through may also contribute to mental illness. Mayes, Murray and their team7 write: “It is quite possible that youth with ASD (youth with Autism Spectrum Disorder (ASD) ) face considerable challenges during the transition from childhood to adolescence. Social difficulties and awareness of being different from others, especially during the teen years, may lead to problems with anxiety, depression, or hostility.” They reported anxiety in autistic children ranging from 67% to 79% depending on the severity of their traits, and depression affecting between 42% and 54% likewise – in comparison to anxiety occurring in 8% of children and adolescents8 and depression in 5% of children, 17% of adolescents13, and 5% of adults12 overall. Similar figures are reported by Susan White and her colleagues in their meta-analysis “Anxiety in children and adolescents with autism spectrum disorders”. The social deficits autistic individuals endure lead to social anxiety by increasing the likelihood of negative interactions9 and then that anxiety makes interaction with others more difficult, perpetuating the cycle. It’s clear there’s an issue here. Despite no biological link, autistic people suffer far greater rates of depression and anxiety than their neurotypical counterparts. They find friendships more taxing, worrying, and less fulfilling due to impossible unrealistic expectations of allistic communication and understanding. They’re far more likely to be the target of bullying and victimisation than their neurotypical counterparts. Autistic adults suffer in their careers and employment due to a lack of accommodation and recognition. But it doesn’t have to be this way. Growing up neurodivergent shouldn’t be traumatic. Existing as an autistic person shouldn’t be fraught with conflict. I don’t know how we will get to that point. It feels like there are a hundred facets to the issue, each their own problem and needing their own solution. That being said, all solutions need to stem from an understanding of autism and autistic individuals. So, what does it mean to be autistic and how can we navigate those communicative differences? The social aspect of autism arises from a deficit in ‘Theory of Mind’, which is the capacity to interpret and conceptualise another’s thoughts, beliefs, emotions, and intentions (1, 2, 9, 10). Second order representations are the events in which Theory of Mind is used to interpret their meaning – and so a disorder in Theory of Mind development affects the ability of an individual to use and understand those second order representations. Essentially: autistic individuals struggle to interpret and conceptualise other people’s thoughts, beliefs, emotions and intentions. What does that mean for communication? As mentioned earlier, it leads to this a twofold miscommunication between autistic and allistic people, where autistic people don’t see meaning where it is, and allistic people see meaning where it isn’t. This is known as the ‘double empathy problem’ (2). But it isn’t just a communication deficit on the part of the autistic person – the disconnect is due to two entirely different communication styles. Allistic people use second order representations readily and frequently. They’re able to infer other’s perspectives with ease and conversation is based around these assumptions. Gestures, body language and inference are used to convey meaning and assess receptiveness. If the wrong assumptions are made, it can lead to ‘fragmenting’, where there is a cost to getting it wrong and the conversation is disrupted (2). It may not be relationship-damaging every time, but people do pick up on misread cues or intentions and often the only indication a mistake has been made is given through those same implicit communications. The creation of a shared understanding is known as ‘intersubjectivity’ (1, 2). Allistic intersubjectivity is managed through these second order representations, where the shared understanding is outlined and defined implicitly. Autistic people don’t have the same ability to interpret second order representations, so rather than probing or assessing what others have in common, they essentially have to guess. As a result, autistic people can seem appear egotistical or self-interested (2) when they spontaneously talk about an interest of theirs, or suddenly change the topic of conversation. In actuality, they’re trying to find common ground. Because finding that initial mutuality is harder, autistic individuals also place far less of a social cost on getting it wrong (2) and so while intersubjectivity may be harder to initially reach, there’s far less penalty for trying and failing. If these bids for connection are reciprocated, it can creates a “rich intersubjective space for shared understanding” (2). These two elements of autistic communication come together to form a coherent communication style. Heasman writes “The generous assumption of common ground and the low demand for coordination are more than two isolated features; they potentially fit together into a functional system that allows rich forms of social relating” (2). The autistic communication style only appears to be dysfunctional when “[placed] against the cultural backdrop of neurotypical norms and expectations” (2). Another way to look at that is that autistic people don’t need ‘extra’ accommodation or compensation compared to allistic people – allistic people just have all their needs already met. They’re already accommodated for, but it’s such a cultural norm that it’s not even perceived as being so. A metaphor for the two types of communication is that of an allistic person and an autistic person trying to set up fishing rods along a river. The allistic person knows where the fish are - perhaps from reading the movement of the water - and sets up all their poles in that spot. The autistic fisherperson has no such information and sets up their rods all up and down the river to try to find themwhere the fish are. Once they’ve got a few bites and know where the fish are, great! They can move all their rods and set up in whatever spot they’ve found. They just don’t have the same ability to determine where to set up in the first place. They’re not any worse at fishing (i.e., communicating) – they just have trouble knowing where to start. Autism is only a disability in an environment that doesn’t support it. As Bury noted, the only deficits in the workplace are from a lack of social accommodation – autistic individuals don’t struggle with the work itself. In fact, both Bury and Hurley-Hanson and her co-authors report that autistic individuals perform better in a multitude of areas: they have greater problem-solving, pattern-recognition and decision-making skills and a greater tolerance for repetition (5, 11). And that’s great! It’s wonderful to be recognised for the talents you have and the effort you put in. But it shouldn’t have to be justified that autistic people deserve employment and equitable treatment. It’s depressing to have your life and experience boiled down to your marketability and employability. But there is still a disconnect between autistic and allistic people. The perception of autistic people as defective rather than different prevents the integration and acceptance of autistic people into the social space and workforce. To work towards an autism-friendly society, education and awareness of the ways communication and understanding differ in neurodivergent individuals need to be ubiquitous. The hardships autistic people face aren’t because we’re autistic – they’re because everyone else isn’t. Instead of us continuing to assimilate to an allistic worldview, perhaps it’s time to meet us halfway and learn how we operate instead. References Frith, U. (1989) A new look at language and communication in autism. Heasman, B. (2018) Neurodivergent intersubjectivity: Distinctive features of how autistic people create shared understanding. Sedgewick, F., Pellicano, E., (2018) ‘It’s different for girls’: Gender differences in the friendships and conflict of autistic and neurotypical adolescents. Happé, F., Leslie, A. (1989) Autism and ostensive communication: The relevance of metarepresentation Bury, S. et al. (2020) Workplace Social Challenges Experienced by Employees on the Autism Spectrum: An International Exploratory Study Examining Employee and Supervisor Perspectives White, W. et al. (2009) “Anxiety in children and adolescents with autism spectrum disorders.” Mayes, S.D., Calhoun, S.L., Murray, M.J. et al. (2011) Variables Associated with Anxiety and Depression in Children with Autism. Bernstein, G. A., & Borchardt, C. M. (1991). Anxiety disorders in childhood and adolescence: A critical review. Journal of the American Academy of Child and Adolescent Psychiatry Bellini, S. (2004) Social Skill Deficits and Anxiety in High-Functioning Adolescents With Autism Spectrum Disorders. Focus on Autism and Other Developmental Disabilities. Brewer, N, Young, RL & Barnett, E 2017, ‘Measuring Theory of Mind in Adults with Autism Spectrum Disorder’ Hurley-Hanson, A. (2020) ‘Autism in the Workplace’, Palgrave Macmillan Institute of Health Metrics and Evaluation. Global Health Data Exchange (GHDx) Selph, S. (2019) Depression in Children and Adolescents: Evaluation and Treatment Previous article Next article alien back to

  • A few words on (Dis)Order! | OmniSci Magazine

    < Back to Issue 2 A few words on (Dis)Order! From modelling the spread of COVID-19 to analysing gene sequences, science has its way of providing clarity and order in situations of apparent chaos. Our Editors-in-Chief give their take on Issue 2’s theme of (Dis)Order, in their various fields of study. by Sophia, Maya, Patrick and Felicity 10 December 2021 Edited by the Committee Illustrated by Jess Nguyen Rainbow cars, erratic robots, and a circuit named Chua — Sophia Lin In Grade 10, I pressed ‘Play’ on my computer, and was captivated by the turbulent air flowing around my race car, rendering the screen with a rainbow of colours. This was the first time I had encountered a tool called Computational Fluid Dynamics, commonly used to analyse the aerodynamics of systems. Turbulent air is probably the most textbook example of chaos, their motion described by the notorious Navier-Stokes equations. But chaotic systems exist everywhere in the natural world and accounting for them in models is essential to be able to test and improve our engineering designs. But how can we use chaos? In 2001, researchers Akinori Sekiguchi and Yoshihiko Nakamura first suggested applying chaotic systems to path planning of robots. [1] Later on, researchers Christos Volos et al. applied the Arnold chaotic system to two active wheels of a simulated mobile robot, allowing it to completely, and quickly, scan the unknown terrain in an erratic, unpredictable way. [2] This exploration strategy is not new in nature, however, with research suggesting that ants partly use random motion to search areas for food. [3] Finally, can we engineer chaos? In the field of electrical engineering, it turns out that this is pretty simple! Chua’s circuit contains your standard electrical components - just a linear resistor, two capacitors, one inductor, and a special non-linear resistor called “Chua’s diode” [4] , and is able to generate a funky “double-scroll” pattern which never repeats. The applications are just as exotic, ranging from communication systems, brain dynamics simulations and even music composition! It’s apparent that learning to model, imitate and harness chaos is key to engineering for our (dis)orderly world. Computer simulation of Chua’s circuit [5] Chua’s Circuit diagram [5] The Chaos in Communication — Maya Salinger Throughout the animal kingdom, and particularly amongst humans, communication methods are continually evolving for structures to be as efficient as possible. [6] In relation to human languages, there are of course thousands of languages being spoken worldwide everyday. It would not surprise me if you said that it was a daily occurrence for you to hear a conversation in a language you could not even remotely understand. To your untrained ears, these languages’ sounds, vocabulary and intonation patterns would be unfamiliar, with the combination of these structures sounding very chaotic. However, languages are inherently very structured due to their natural inclination towards efficiency. This structure is observed in hundreds of ways, from the patterning of the tiniest units of sounds, known as phonology, to the much larger structure of phrases and sentences, known as syntax. However, each language has its own unique set of structures, thus explaining their diversity and our inability to comprehend unfamiliar languages. Furthermore, structure in communication is not limited to human language. Throughout the animal kingdom, there are many species that consciously order certain movements or sounds to express particular information. For example, honeybees have a refined method of communication called a “waggle dance”. [7] Whilst it appears to you or I that a honeybee’s movements are random, they strategically encode the precise distance and direction of a nearby flower patch. Structured communication can be seen widely throughout the animal kingdom, despite how chaotic it can appear on the surface for those outside the language community. Our Bodies, in Chaos — Felicity Hu Like it or not, we are no strangers to disorder. In the changing world around us, chaos seems to be wherever we look: from our unpredictable Melbourne weather to the many phases of disarray brought on by COVID-19. Although we might encounter disorder in our external environment, we also carry around a little chaos of our own, packaged unassumingly within our bodies. What better example than in our own heads? Our brains have an astonishing number of around 86 billion neurons [8], polarising and depolarizing at different rates [9] The chaos of our neural network, with its many components phasing in and out of firing, its cells cycling through life and death, happens even as you are reading this. From the chaos of our brains, however, comes the clarity and processes we use every day. When preparing a cup of tea for a study break, for example, the chaos in our brains follows the wandering of our minds as we wait for the water to boil. Even after we have a steaming cuppa on our table, our ability to learn the wild and wonderful things from our university textbooks arises from the tangle of neurons and signals in our brains. While we aim to control the chaos in the world around us, sometimes it is worth appreciating the fact that we, too, have chaos in our own minds. And even more astoundingly, that we can derive clarity from it. Learning to Count — Patrick Grave I was never very good at counting. As a tiny boy I sat cross-legged, thumbing through the strands of my frayed shoelace, when I finally figured out how to count by twos. Until this point in Grade One, I did not know how I did addition; maybe I copied from the kid next to me, or perhaps there was something greater. See, on the list of important human inventions, counting ranks fairly highly. It takes a mysterious instinct, that of ‘more’ and ‘less’,and formalises it, creating order and power. When ancient peoples began using clay tokens with numeric values [10] and writing symbols on tablets [11], they could move beyond the four objects kept in visual memory [11] or the ten kept on fingers. They could track larger quantities: people, livestock, and wealth. [12] [15]: Ancient Uruk accountancy tokens and protective seal [16]: Counting using tally marks on sign at Hanakapiai Beach As a 10-year-old, I would tally things on my legs with Sharpie: Tennis serves, laps of the oval, footy goals for the season. Mum was not impressed. Over time, numbers branched out. Arithmetic was invented. Greek scholars like Archimedes used negative powers to store fractional parts [13]. In the Hindu-Arabic system, the number zero exists, and each digit’s position matters, allowing for efficient computation. This paved the way for banking, finance, and modern industry [14]. My friend showed me fractions a year early. With hushed tones and nervous side-glances, he wrote one number over another. They still feel a bit like magic. While modern maths has largely preserved the Hindu-Arabic system, other ways of counting have existed, each tailored to a civilisation’s needs. The Incas kept numerical records using knots in rope as they were less interested in advanced computation [15]. The Maya peoples used a base-20 system. [16] So, these numbers and counting systems are not natural. Instead, they have been imposed on nature by the machine of human progress. Counting tells a rich story of human development and of each civilisation’s place in that rich tapestry. Unlike humanity, I’m still not very good at counting. To our team and our readers We’d like to extend a massive thank you to the team behind Issue 2 of OmniSci Magazine! It has been a hectic, but rewarding few months, and we are so grateful for the effort, care and passion that has brought this issue together. We can’t wait to reflect on our journey so far, and bring more science to our readers in 2022. References Nakamura, Yoshihiko, and Akinori Sekiguchi. “The Chaotic Mobile Robot.” IEEE Transactions on Robotics and Automation 17, no.6 (Dec 2001): 1-3. http://projectsweb.cs.washington.edu/research/projects/multimedia5/JiaWu/review/Cite1.pdf Volos, Christos, Nikolaos Doukas, Ioannis Kyprianidis, Ioannis Stouboulos and Theodoros Kostis, Chaotic Autonomous Mobile Robot for Military Missions (Rhodes Island, Proceedings of the 17th International Conference on Communications, 2013), 1-6, Garnier, Simon, Maud Combe, Christian Jost, Guy Theraulaz. “Do Ants Need to Estimate the Geometrical Properties of Trail Bifurcations to Find an Efficient Route? A Swarm Robotics Test Bed.” PLoS Computational Biology 9, no.3 (2013): doi: 10.1371/journal.pcbi.1002903 Gauruv Gandhi, Bharathwaj Muthuswamy, and Tamas Roska, “Chua’s Circuit for High School Students”, Nonlinear Electronics Laboratory, https://inst.eecs.berkeley.edu/~ee129/sp10/handouts/ChuasCircuitForHighSchoolStudents-PREPRINT.pdf Shiyu Ji, “ChuaAttractor3D”, published November, 2016, https://en.wikipedia.org/wiki/Chua%27s_circuit#/media/File:ChuaAttractor3D.svg Gibson, Edward, Richard Futrell, Steven T. Piandadosi, Isabelle Dautriche, Kyle Mahowald, Leon Bergen, Roger Levy, “How Efficiency Shapes Human Language,” CellPress 23, 5 (2019): 389-407, https://doi.org/10.1016/j.tics.2019.02.003 . Landgraf, Tim, Raúl Rojas, Hai Nguyen, Fabian Kriegel, Katja Stettin, “Analysis of the Waggle Dance Motion of Honeybees for the Design of a Biomimetic Honeybee Robot,” PLoS ONE 6, 8 (2011): e21354, https://doi.org/10.1371/journal.pone.0021354 . Azevedo, Frederico A.C., Ludmila R.B. Carvalho, Lea T. Grinberg, José Marcelo Farfel, Renata E.L. Ferretti, Renata E.P. Leite, Wilson Jacob Filho, Roberto Lent, and Suzana Herculano-Houzel. 2009. "Equal Numbers Of Neuronal And Nonneuronal Cells Make The Human Brain An Isometrically Scaled-Up Primate Brain". The Journal Of Comparative Neurology 513 (5): 532-541. doi:10.1002/cne.21974. Kalat, James. 2018. Biological Psychology. Mason, OH: Cengage. Schmandt-Besserat, Denise. 2008. "Two Precursors Of Writing: Plain And Complex Tokens - Escola Finaly". En.Finaly.Org. http://en.finaly.org/index.php/Two_precursors_of_writing:_plain_and_complex_tokens . Schmandt-Besserat, Denise. 1996. How Writing Came About. Austin: University of Texas Press. Finn, Emily. 2011. "When Four Is Not Four, But Rather Two Plus Two". MIT News | Massachusetts Institute Of Technology. https://news.mit.edu/2011/miller-memory-0623 . Law, Steven. 2012. "A Brief History Of Numbers And Counting, Part 1: Mathematics Advanced With Civilization". Deseret News. https://www.deseret.com/2012/8/5/20505112/a-brief-history-of-numbers-and-counting-part-1-mathematics-advanced-with-civilization . Archimedes, and Thomas Heath. 2002. The Works Of Archimedes. New York: Dover. "The Use Of Hindu-Arabic Numerals Aids Mathematicians And Stimulates Commerce | Encyclopedia.Com". 2021. Encyclopedia.Com. Accessed December 9. https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/use-hindu-arabic-numerals-aids-mathematicians-and-stimulates-commerce . Bidwell, James K. 1967. "Mayan Arithmetic". The Mathematics Teacher 60 (7): 762-768. doi:10.5951/mt.60.7.0762. Nguyen, Marie-Lan. 2009. Accountancy Clay Envelope Louvre Sb1932.Jpg. Image. https://commons.wikimedia.org/wiki/File:Accountancy_clay_envelope_Louvre_Sb1932.jpg . War, God of. 2010. Hanakapiai Beach Warning Sign Only. Image. https://commons.wikimedia.org/wiki/File:Hanakapiai_Beach_Warning_Sign_Only.jpg . Previous article back to DISORDER Next article

  • The Power of Light | OmniSci Magazine

    < Back to Issue 4 The Power of Light by Serenie Tsai 1 July 2023 Edited by Yasmin Potts and Tanya Kovacevic Illustrated by Pia Barraza Light is often a symbol of greatness, and rightly so, with its ability to be both visible and invisible. It exists in the form of wavelengths, which we view as a multitude of colours. However, the powers of light extend beyond that: light has the potential to manipulate the way we see things, resulting in mesmerising and sometimes mind-boggling illusions. Colour is nothing without light Light is a form of electromagnetic radiation that lies on a spectrum. Due to our limited ability to see these electromagnetic waves, we are only able to see what is characterised as visible light [1]. Colours exist as different wavelengths in a rainbow-coloured order, with red being the longest wavelength and violet being the shortest wavelength, and these colours are detected by cone-shaped cells in our eyes [2]. There are two types of common light rays outside of our visible light range, ultraviolet and infrared light, positioning animals who can detect these to have superior vision [3]. Moreover, as colours and lights exist in the form of wavelengths, temperature can affect what is seen. For example, hot objects radiate short wavelengths, changing the colour we see, such as a hot flame having a range of red to blue colours, because of the way heat radiates from it [1]. Role of light in the mirage There is an age-old question: what would you do with the power to be invisible for a day? Well, the ability to do this is not that far into the future, with many scientists developing methods to make this a reality. Magicians use a common trick of placing mirrors strategically for a disappearing act. The use of mirrors reflects light away from the object so all we see is empty space because our eyes are programmed to view light as a straight line, so we struggle to process it any other way [4]. So far, this has worked successfully to disappear objects on a small scale. However, scientists are finding ways to amplify this technique to disguise larger items or even a person. A recent viral TikTok video is baffling people as to how a mirror can reflect an object hidden behind a piece of paper. Let’s unpack the science behind this trick. When light rays hit an object, photons of light are reflected off it in all directions, and some of these rays will hit the mirror. So, when you look at the object at a certain angle, you can also see it being reflected into the mirror, despite having a boundary in-between [5]. Similarly, this sort of illusion can be seen in nature itself. There is an optical phenomenon in the desert, which produces a mirage image on the ground. Because heat affects wavelengths of light, a warm surface on the ground can bend the rays of light from the sun upward, creating what is known as an inferior image. For example, this could make it seem like there is water on the ground, when in fact it is a reflection of the sky because an image of a distant object can be seen below the actual position of the object. Likewise, if there was cool air underneath, it would create a superior image [6]. This is all due to a temperature gradient created between the ground and the atmosphere above it [7]. Invisibility in the movies Violet from The Incredibles and the Fantastic Four heroine, the Invisible Woman, can both become invisible at their own will. While these examples are only in the movies, there is some truth here. Light can be manipulated to create an illusion, although it is unlikely to appear as realistic as an invisibility cloak. A more theoretically possible form of light manipulation would be the advanced technology portrayed in movies such as Marvel and Harry Potter. It features hovercrafts and a flying car, respectively, that possess the ability to camouflage themselves against their background. This is done through reflective plates, which become a mirror to match the surrounding objects and reflect light away to conceal the object. Another example of a cinematic light-based mirage is in the movie Now You See Me, which includes a series of magic tricks. In one scene, a character is shown to stop rain mid-air and control its movement with his hands. Sorry to ruin the magical illusion, but this one is merely a simple trick of strobe lights flashing repeatedly at the right frequency which makes it seem like the rain is stopped in mid-air. It also requires some movie magic and a large-scale rain machine to control the droplets [8]. There has been so much progress on movie-making to make creative imaginations a reality. For example, there is a new focus on transformation optics, the application of metamaterials to manipulate electromagnetic radiation. Metamaterials are designed with unique patterns to interact with light and other energy forms artificially. For example, Pyrex glass and oil have the same refractive index, so if you put these items together, the refraction of light against these objects can make it disappear out of view [9]. This is an easy trick you can try at home. Overall, light has a multitude of abilities that are still untapped. However, there is hope in society's ability to take advantage of technology and discover more uses for light, and its ability to evade the human eye. We could soon be having magic shows worthy of contending with even the most bizarre movies. References Visible Light | Science Mission Directorate [Internet]. science.nasa.gov . Available from: https://science.nasa.gov/ems/09_visiblelight#:~:text=WAVELENGTHS%20OF%20VISIBLE%20LIGHT Fara P. Newton shows the light: a commentary on Newton (1672) “A letter ... containing his new theory about light and colours...” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2015 Mar 6;373(2039):20140213–3. Animals See a World That’s Completely Invisible to Our Eyes [Internet]. All About Vision. [cited 2023 Jun 26]. Available from: https://www.allaboutvision.com/eye-care/pets-animals/how-animals-see/ David R. Smith Group [Internet]. people.ee.duke.edu . Available from: http://people.ee.duke.edu/~drsmith/transformation-optics/cloaking.htm Nicholson D. How does the mirror know what’s behind the paper? Explained! [Internet]. Danny Nic’s Science Fix. 2023 [cited 2023 Jun 26]. Available from: https://www.sciencefix.co.uk/2023/04/how-does-the-mirror-know-whats-behind-the-paper-explained/ Richey L, Stewart B, Peatross J. Creating and Analyzing a Mirage. The Physics Teacher. 2006 Oct;44(7):460–4. Li H, Wang R, Zhan H. The mechanism of formation of desert mirages. Physica Scripta. 2020 Feb 11;95(4):045501. Now You See Me 2 [Internet]. Framestore. 2016 [cited 2023 Jun 26]. Available from: https://www.framestore.com/work/now-you-see-me-2?language=en Puiu T. Human-sized invisibility cloak makes use of magic trick to hide large objects [Internet]. ZME Science. 2013 [cited 2023 Jun 26]. Available from: https://www.zmescience.com/science/physics/human-sized-cloak-hide-large-objects-543563/ Previous article Next article back to MIRAGE

  • The Mirage of Camouflage | OmniSci Magazine

    < Back to Issue 4 The Mirage of Camouflage by Krisha Ajay Darji 1 July 2023 Edited by Megane Boucherat and Tanya Kovacevic Illustrated by Aisyah Mohammad Sulhanuddin Imagine driving on a highway and the road is shimmered by the scorching midday sun. Whilst you drive further on a day like this, you might envision a wet patch gleaming on the road. Does it make you wonder how a mirage passes by playing with your vision? While there is physics involved in this phenomenon, evolution through natural selection has rendered some of its own biological members the ability to play with visual perceptions in subtle but enchanting ways! What comes to your mind when you hear the word camouflage? Some might visualize a chameleon blending in almost any background possible. Others might envision a soldier wearing camouflage pants and shirts to match the earthy tones for their defence. Colourful frogs, butterflies, snakes and so on might cross your mind as you think deeper about this phenomenon. Nature is filled with some of the most fascinating examples of camouflage. Camouflage as a Prehistoric Phenomenon The coloration patterns found on the Sinosauropteryx, a tiny, feathered, carnivorous dinosaur that lived in what is now China during the Early Cretaceous period was studied by a group of scientists. They discovered evidence of coloration patterns corresponding to modern animal camouflage by tracing the distribution of the dark pigmented feathers over the body. This included stripes running around its eyes and across the tail, and countershading with a dark back and pale bottom. By contrasting and comparing the mask and striped tail with the colours of contemporary animals, we can learn more about the evolution of camouflage as a means of natural selection [1]. The presence of stripes on only tails rather than the whole body of certain animals is not well understood, but they are suspected to function as a type of disruptive camouflage. Disruptive camouflage means visually separating the outline of a portion of the body from the others and to make it less noticeable. It could also serve as a type of deception by attracting predators' attention to the tail and away from the more vital parts - the body and head. Birds are found to be the most evident illustration of this as they descend from the theropod dinosaur [1]. Early tyrannosauroids, the ancestors of the ferocious T-rex, coexisted with Sinosauropteryx and may have even hunted the little dinosaur. Sinosauropteryx hunted tiny lizards, as was demonstrated by direct evidence in the shape of a whole animal preserved in the stomach of one of the specimens found. Hence, it is clear that camouflage patterns were developing at that time; since vision was critically important to these dinosaurs while they were hunting and being hunted. This example demonstrates camouflage as a prehistoric phenomenon and its evolution in the animal kingdom. Camouflage in Modern Day Animals Animals use camouflage primarily for defence. Blending in with their background prevents them from being seen easily by predators. The use of warning coloration, mimicry, countershading, background matching and disruptive coloration are mechanisms through which animals employ camouflage. Sneaky Snakes! The harmless scarlet king snake has stripes that resemble those of the deadly coral snake, but it is not poisonous. The only significant distinction between the two is the arrangement of the colours in their patterns. While the pattern for coral snakes is red-yellow-black, for scarlet king snakes it is red-black-yellow [2]. The difference is simple for anyone to remember thanks to a rhyme! Red on yellow kills a fellow, Red on black won’t hurt Jack! This is a classic example of mimicry: a form of camouflage in which one organism imitates the appearance of another to avoid predators. The Walking Leaf! The leaf insect or the waking leaf belongs to the family Phylliidae and is quite like its name. The walking leaf's body has patterns on its outer edges that look like the bite marks that caterpillars leave behind in leaves. To resemble a leaf swinging more accurately in the breeze, the insect even sways while walking! This is an example of a type of camouflage known as background matching- one of the most prevalent forms of camouflage. It is a mechanism through which a particular organism hides itself by resembling its surroundings in terms of its hues, shapes, or movement [2]. Mottled Moth! It is challenging for predators to determine the form and direction of the tiger moth as it is mottled with intricate patterns of black, white, and orange on its wings. This is an example of disruptive camouflage: when an animal has a patterned coloration, such as spots or stripes, it can be difficult to detect the animal's contour [2]. Lurking Leopards! Black rosettes on a light tan backdrop serve as the hallmarks of the leopard’s well known coat patterns. Their coats also include a subtle countershading to help them amalgamate with their environment and evade detection by prey. A leopard's body has a significantly lighter underside than the rest of its coat, which consists mostly of its belly and the bottom of its legs. This produces a shading effect that helps conceal the leopard's body form and contour, making it more challenging to see in low light or when seen from below. This is a typical example of countershading, which is a type of camouflage wherein the animal’s body is darker in colour, but its underside is lighter. It works by manipulating the interactions between light and shadows; thus, making the animal difficult to detect [2]. But what allows these animals to change their colours? Animals can camouflage themselves through two primary mechanisms: Pigments - biochromes Physical structures - prisms While some species have natural and microscopic pigments known as biochromes, others possess physical structures like prisms for camouflage. Biochromes can reflect some wavelengths of light while absorbing others. Species with biochromes can actually seem to alter their colour. Prisms can reflect and scatter light to give rise to a colour that is different from the animal’s skin [2]. Camouflage is not quite restricted to the sense of vision. There are several other ways evolution has taught the living world to adapt and protect themselves in the wild. There is a whole exciting world of behavioural and olfactory camouflage employed by diverse species in the animal kingdom. Ultimately, the compelling association of camouflage with the phenomenon of mirage conveys to us how nature always evolves and expands to secure the continued existence of its inhabitants. From the glistening heat of mirages on arid vistas to the delicate patterns on the wings of a butterfly, this fascinating juxtaposition of mirage and camouflage delivers a peek into the incredible mechanisms that animals deploy to traverse their natural habitats and survive amidst the obstacles they encounter. References Smithwick F. We discovered this dinosaur had stripes – and that tells us a lot about how it lived [Internet]. 2017 [cited 2023 May 12]. Available from: https://theconversation.com/we-discovered-this-dinosaur-had-stripes-and-that-tells-us-a-lot-about-how-it-lived-86170 National Geographic. Camouflage [Internet]. [cited 2023 May 12]. Available from: https://education.nationalgeographic.org/resource/camouflage/ Previous article Next article back to MIRAGE

  • Meet the New Kid

    Meet the New Kid By Julia Lockerd 23 March 2022 Edited by Caitlin Kane Illustrated by Quynh Anh Nguyen ‘Machines Enrol in Art Class!’ The title of the American Scientist article (1) I’m currently reading is droll take on the process of artificial intelligence (AI) learning. I imagine the first art class I ever attended had a robot classmate. “I want everyone to be very welcoming to our new student! Class this is DALL-E.” DALL-E’s name is a clever blend of surrealist painter Salvador Dali and robot character WALL-E. It is the most popular AI art platform in the world, as well as the face of a quickly expanding industry. The purpose of DALL-E is evident in its namesakes: simply, it is a robot that creates art. Artificial intelligence is described as "the science and engineering of making intelligent machines (2).” More specifically “machines that think like humans.” AI art is an application of this wider machine learning. In short, it is art created by a “thinking” computer. In mid-2022 the world of AI art became a monster of industry, with AI art platform Midjourney reporting over 12 million users since its launch in July 2022 (4). However, as with any quick advancement in technology, there are issues that come with the new power we’ve been given; there is a question we must ask ourselves: how far is too far? Back in art class, other students and I share uneasy glances as our strange companion clicks and whirrs behind his desk. I smile at him and reach out a hand. He breaks my finger and steals my Snoopy drawing right off my desk. Ouch. This is the first impression many artists had when AI art was first introduced. For years we had been told that truck drivers, factory workers and other industry roles would be fully automated in the future. This was an issue in itself, but an inevitability as the wheels of advancement turned over. Few expected that the creative industries would so quickly slip under the control of automated technology. With AI on the rise, many artists fear for their livelihoods, job prospects and their intellectual and creative property. To both create and vet the art for our personal viewing experience, AI uses tools called Generative Adversarial Networks (5). Imagine two little robots hunched over side-by-side desks. One’s job is to create images and fool the other into believing its art is original. If the second robot is fooled half the time, the first is performing as it should, creating art the public will believe is genuine. Fool me once. The definition of “genuine” art is vague at best and still under heavy debate. I believe that “genuine” is a feeling you get when you look at the art in front of you. It’s up to you to decide, can AI art ever really be genuine? Another issue arises from AI art: usually when you go to an art class, the teacher knows they’re teaching. My robot classmate begins to shuffle through its filing cabinet of pre-existing works made by humans. It’s been fed these images, paintings, photographs and learnt to reassemble the input as AI-created art (1,6,7). I can’t help but bristle in contempt as he examines my sketch of Snoopy and adds it to the ever-growing collection of “borrowed” art. As public use of AI continues to rise, we will inevitably have more ethically grey tundra to cross. In 2018 the Portrait of Edmund Belamy, sold for 432,500 USD at Christie’s Auction house. The controversy surrounding the piece stems from the fact that it was painted by an AI that had been fed 15,000 portraits from 20th century artists (7). Edmond De Belamy is not a real person, nor is the person who painted his portrait. Both are simply amalgamations of the people who came before. Which begs the questions, who deserves to be rewarded for this artistic feat? Is this painting even original? Once upon a time it was something genuine; it is up to us to decide how many times we can take the derivative of a piece of art before it loses its emotion. Or is it simply always the case that every artist takes inspiration from those who came before? When each creation is the derivative of a piece, it’s critical to examine what it’s deriving from. It is both fascinating and alarming that social biases have even made their way into the creative and malleable minds of machines. Dark-skinned people and hijab wearers have taken to social media to report their selfies, which they had run through an AI software, had returned distorted, warped or whitewashed (8). AI learns from the dataset that its human trainers provide, and it's important that we consider who and what are represented in that training. It is a strange sort of embarrassment to know that these machines and their endless learning have picked up on our shortcomings. In a world that already rejects difference and shame people for their deviation from unachievable standards, we have taught machines to do the same. Like a child passively taking up its parents' opinions. In this way, some consequences of our technological development aren’t so much AI art issues as they are societal issues. The only fix is to work to include and recognise all people in creative spaces so that machines can learn to think like all humans. Despite criticism and philosophising, we cannot stop the march of progress. AI will continue to advance, to become better at thinking and emulating us. Perhaps our responsibility will just be to give them something good to copy. As for traditional artists left behind by the AI advance? I believe we’ll be okay. We differ from machines, and there will always be something more rewarding than just an output. The joy is in the creation, the connection, and the humanity of art. Half of my art class is robots now, churning out hundreds of creations per second. I hold up a half-finished picture to my desk mate to see their smile. That moment of connection is why it’s worth staying until the end of the class. References Elgammal A. AI Is Blurring the Definition of Artist [Internet]. American Scientist. 2019. Available from: https://www.americanscientist.org/article/ai-is-blurring-the-definition-of-artist McCarthy J. What is AI? [Internet]. Stanford.edu. 2012. Available from: http://jmc.stanford.edu/articles/whatisai.html Midjourney Discord Interface [Internet]. docs.midjourney.com. Available from: https://docs.midjourney.com/docs/midjourney-discord Hughes RT, Zhu L, Bednarz T. Generative Adversarial Networks–Enabled Human–Artificial Intelligence Collaborative Applications for Creative and Design Industries: A Systematic Review of Current Approaches and Trends. Frontiers in Artificial Intelligence. 2021 Apr 28;4. Goodyear S. Why those AI-generated portraits all over social media have artists on edge [Internet]. CBC. 2022. Available from: https://www.cbc.ca/radio/asithappens/artificial-intelligence-ai-art-ethics-greg-rutkowski-1.6679466 Christie's. Is artificial intelligence set to become art’s next medium [Internet]. Christies.com. Christies; 2018. Available from: https://www.christies.com/features/A-collaboration-between-two-artists-one-human-one-a-machine-9332-1.aspx GANs. Edmond De Belamy, From La Famille de Belamy [Internet]. Caselles-Dupré H, Fautrel P, Vernier G, editors. original gilded wood frame. 2018. Available from: https://www.christies.com/lot/lot-edmond-de-belamy-from-la-famille-de-6166184/?from=salesummery&intobjectid=6166184&sid=18abf70b-239c-41f7-bf78-99c5a4370bc7 AI selfies — and their critics — are taking the internet by storm. Washington Post [Internet]. Available from: https://www.washingtonpost.com/technology/2022/12/08/lensa-ai-portraits/ Previous article Next article

  • Climate Change, Vaccines & Lockdowns | OmniSci Magazine

    Climate Change, Vaccines & Lockdowns: How and Why Science Has Become a Polarising Political Debate By Mia Horsfall In light of the compounding climate crisis and the COVID-19 pandemic, the discussion around how we implement scientific research into political realms is growing, and with it, the controversy. But perhaps the debate surrounding such contentious issues reveals more about how we communicate our science than the quality of the science itself. Edited by Yen Sim & Andrew Lim Issue 1: September 24, 2021 Illustration by Janna Dingle The degree to which public rhetoric morphs and formulates enactment of scientific research in topics such as climate change, energy politics and vaccinations has become increasingly evident in recent years, as evidenced by polarising public debates surrounding the COVID-19 pandemic and the ‘School Strike’ movements. The ‘apocalyptic narratives’ employed by climate protesters are often combated with condescension and intellectual elitism propagated by political figures, resulting in a remarkably detached exchange of dialogue and a good deal of reticence but an overwhelming lack of progress. Reluctance to accept COVID-19 vaccinations and lockdowns is indicative more of a dogmatic belief in exertion of liberty at all costs rather than a measured comprehension of the implications of such decisions. Likewise, discussions surrounding implementation of nuclear power showcase the disconnect between scientific research and economic policy making, resulting in conflict and frustration as the two struggle to reconcile. The role of science in political, legal and social spheres is contingent upon public discourses surrounding its relevance and remains largely subservient to public opinion. Scientific matters should increasingly, “be studied in relation to how they impact social structures,” (Holmberg & Alvinius, 2020) and it is in this way we can hope to understand the dimorphic nature of research and its intersection with political and social implications. To understand how scientific discourse shifts from a research-centric discussion to a tool to uphold political ideology, it is crucial to deconstruct the rhetoric utilised by opposing sides of the climate debate to advance support for their cause. Examination of the discourse on different sides of the ‘School Strike’ movement ironically reveals that both sides stem from the same source: an analysis of the authority of youth in political spheres. The succinct, punchy statements used to endorse student climate advocacy relish in the youth of the protesters – “you’ll die of old age, we’ll die of climate change”, “I’d be in school if the earth was cool”, “it’s getting hot in here so take off all your coals,'' (Kamarck, 2019). By focusing the targets of the movement on ‘abstract’ actors such as legal, political and economic ecosystems, the movement distances itself from the accepted scientific consensus and focuses on the issue of the mobilisation of policymakers in climate action. These ‘apocalyptic narratives’ do not question the authority of the science communicated, instead hinging their argument upon the challenge of inciting political change from a youth-driven movement. Their narrative relies on the distinct lack of political influence historically held by youth, and satirises the predicted response of politicians such as the then Federal Minister for Education Dan Tehan who asserted that the strikes were orchestrated by professional activists and children were missing valuable class time (Perinotto & Johnston, 2019). The difficulty then posed is that formulating the protester’s messages from a place of pathos drives the argument further away from the scientifically enforced urgency and enables politically interested individuals to divert the argument from one of scientific claim to one about challenging the authority of youth to speak with regards to politics. Prime Minister Scott Morrison’s suggestion to the school strikers to, “get a bit of context and perspective,” (Perinotto & Johnston, 2019), is saturated not only with elitism but an enforcement of the notion of political superiority, that some knowledge remains incomprehensible to the public sphere and is privy only to the select few. It remains, then, that the biggest obstacle in the school strikers’ position is the unification of scientific authorities, politicians and the emotionally driven and passionate youth. But perhaps the politicisation of climate change has more to do with political dichotomisation than the controversy of the science itself. Chinn, Hart and Soroka assert that, “beliefs about climate change have become a marker of partisan affiliation,” (Chinn, Hart, & Soroka 2020), and this is not the only realm of scientific contention to become politicised. Opposition to government-mandated lockdowns, vaccinations and regulations of genetic modification of food all stem from one crucial point of difference in belief; the degree to which the government should have the ability to regulate everyday happenings of our lives. This is not a new phenomenon. This key difference is at the heart of bipartisanship and is the central debate in almost every political issue. So perhaps the issue is not inherently the politicisation of scientific discourse, as implementation of policy in reference to new scientific findings will inevitably become politicised, but the monotonous rhetoric employed by the left and the right. As Kamarck upholds, “it is the lack of trust in government that may be one of the foundational barriers to effective environmental action,” (Kamarck, 2019). If we take the intent of science as being to seek a degree of objective insight about the nature of the world and its happenings, it will naturally lead to division in political climates saturated by individual motivation and greed. A 2020 American study utilised word frequency analysis software of articles from four major newspapers (New York Times, Chicago Tribune, Los Angeles Times and The Washington Post) to quantitatively determine the number of times scientists’ names were mentioned in regard to phrases such as ‘global warming’ or ‘fracking’, in comparison to politicians (see Figure 1 & 2). Whilst this understandably has to do with matters of climate policy making and does not in and of itself convey an image of the politicised nature of the debate, it does provide significant insight into the shifting obstacles faced in attaining climate action. What provides significantly greater insight is an analysis conducted of the language variance within the media of the parties across the years. From this data, we see that whilst the difference in rhetoric across the two major parties is significant, it is also largely unchanging. It is this divide in political narratives that fosters a sense of distrust and scepticism amongst individuals. Where more left-leaning parties emphasise the social inequalities that will be expounded upon as the consequences of climate change compound, conservatively leaning parties perpetuate the notion that climate action stipulates a greater control of the government on energy politics and enables less agency to the individual. In their narrative, the economic consequences outweigh the benefit of transition to renewable energy systems. From such polarised discourse, it becomes apparent that the way science operates within social spheres has more to do with pre-existing flaws in systemic structures than the quality of the science itself. Figure 1 (2) Figure 2 (2) Of course, a key consideration of how political and activist narratives impact the science that is upheld is through the medialisation of science. ‘Medialisation’ is the concept that science and media should engage in a reciprocal relationship, where scientists use media for broader impact and to advocate for more public funding while the media relies on interest to propagate scientific breakthroughs (Scheufele, 2014). The utility of science comes only from what is accepted and implemented in public opinion, hence scientific practice continues to grow into these frameworks, particularly in discussions around climate change or gene editing technologies. Ultimately, as Scheufele asserts, “the production of reliable knowledge about the natural world has always been a social and political endeavour,” (Scheufele, 2014), one that the media capitalises on to make as economical as possible. That is, it is in most media outlets’ interest to frame politics and science as being at odds with each other as, “coverage increases dramatically if and when issues become engulfed in political or societal controversy,” (Scheufele, 2014). Whilst science cannot and should never be removed from subjugation to moral scrutiny, discourse remains dominated by discussion surrounding the legitimacy of those advocating for one side or the other, rather than the quality of the science itself. Of course bias exists in media outlets , but is propagated by the bias of the consumers, as a consequence of ‘motivated reasoning’. That is, individuals subconsciously place more weight upon information that confirms pre-existing viewpoints and divert more energy into finding flawed reasoning for all that does not concur with preconceived perceptions. The result is a positive feedback loop that is hard to curtail. Individuals form opinions from information they are exposed to in the media, subconsciously seek further information to fortify their initial opinion, leading to opinion reinforcement. In this way, microcosmic ‘mediated realities’ form, each individual inhabiting a vastly different scientific landscape than those of the opposite opinion. In these realities, it is the implications of policy making rather than objective reasoning about the science itself that prevails, resulting in scientific breakthrough perpetually existing subserviently to the opinion of the people, irrespective of whether that opinion is informed. This consequently influences what scientific research is allocated what proportion of public funding, inadvertently providing a quantitative discriminator in what ‘sides’ are upheld in the media. So, what role should science play in political discourse? How do we ensure a mediation of scientific advice and democratic decision making? Darrin Durant of the University of Melbourne unpacks this question, deliberating on whether science should assume a ‘servant’ or ‘partner’ role when it exists within public discourse. Durant argues that if science were to assume the role of a servant (acting in an advisory position to politics), public perception would descend into a degree of populism, overrun by conspiracists and anti-pluralists. Rather, if it were to exist as a ‘partner’, legitimising the authority held by scientific figures, a degree of objectivity could be applied to an otherwise dynamic and transient political landscape. It is only by bridging the political dichotomy that prevails in media and social spheres that scientific discourse will cease to fall prey to political weaponization, existing as a level-ground for rational debate rather than morphing in accordance with ideology. References: Alvinius, A & Holmberg, A. (2020). Children’s protest in relation to the climate emergency: A qualitative study on a new form of resistance promoting political and social change. SAGE Journals. https://journals.sagepub.com/doi/full/10.1177/0907568219879970. Chinn, S., Hart, P., & Soroka, S. (2020). Politicization and Polarization in Climate Change News Content, 1985-2017. SAGE Journals. https://journals.sagepub.com/doi/full/10.1177/1075547019900290. Durant, D. (2018). Servant or partner? The role of expertise and knowledge in democracy. The Conversation.https://theconversation.com/servant-or-partner-the-role-of-expertise-and-knowledge-in-democracy-92026. Durant, D. (2021). Who are you calling 'anti-science'? How science serves social and political agendas. The Conversation. https://theconversation.com/who-are-you-calling-anti-science-how-science-serves-social-and-political-agendas-74755 . Feldman, H. (2020). A rhetorical perspective on youth environmental activism. Jcom.sissa.it. Retrieved 11 September 2021, from https://jcom.sissa.it/sites/default/files/documents/JCOM_1906_2020_C07.pdf . Kamarck, E. (2019). The challenging politics of climate change. Brookings. https://www.brookings.edu/research/the-challenging-politics-of-climate-change/ . Perinotto, T., & Johnston, P. (2019). What our leaders said about the school climate change strike. The Fifth Estate. https://thefifthestate.com.au/urbanism/climate-change-news/what-our-leaders-said-about-the-school-climate-change-strike/ . Scheufele, D. (2014). Science communication as political communication. Pnas.org. https://www.pnas.org/content/pnas/111/Supplement_4/13585.full.pdf. The best climate strike signs from around the globe – in pictures. The Guardian. (2021). https://www.theguardian.com/us-news/gallery/2019/sep/20/the-best-climate-strike-signs-from-around-the-globe-in-pictures . Image reference - https://journals.sagepub.com/doi/full/10.1177/1075547019900290

  • Hidden Worlds: a peek into the nanoscale using helium ion microscopy | OmniSci Magazine

    < Back to Issue 2 Hidden Worlds: a peek into the nanoscale using helium ion microscopy How do scientists know what happens at scales smaller than you can see using an optical microscope? One exciting method is the helium ion microscope which can be used to view cells, crystals and specially engineered materials with extreme detail, revealing the beauty that exists at scales too small to imagine! by Erin Grant 10 December 2021 Edited by Jessica Nguy and Hamish Payne Illustrated by Erin Grant The room is white, with three smooth walls and a fourth containing a small sample prep bench and high shelves. In the centre is a desk with three monitors. Next to it, occupying most of the space, is the microscope. Eight feet tall, a few feet wide, resting on an isolated floor surrounded by caution tape; “NO STEP” written in big block letters. Wires protrude from its tiered shape in orderly chaos. It is a clean, technological space; we are ready to explore science. A colleague and I are at the Materials Characterisation and Fabrication Platform of the University of Melbourne to finish off the last steps of a scientific paper I’ve been working on for many years. What I need, as the icing on the cake, is an image. What does my sample look like way down there, at the nanometre scale? Objects that are only nanometres in size are very hard to imagine when we’re used to thinking about metres, centimetres, or maybe even millimetres. We can see those length scales; they are part of our everyday. So, if you’re told that proteins have a diameter of a few nanometres, what does that mean? Well, to be precise, a nanometre is one-billionth of a metre. A human hair, the go-to yardstick for describing small things, has a width between 0.05-0.1 millimetres, which means that if you wanted to slice a hair into nanometre-wide strands you’d end up with nearly 100,000 pieces. Unfortunately, that’s still hard to visualise, but I’ve found that when working with and thinking about scales like this every day, you gain a sort of mental landscape that small things occupy, perhaps not entirely in context, but a space that contains an overall ‘vibe’ of smallness. I first noticed this when I worked in a laboratory that studies the tiny nematode worm C. elegans. These creatures are half a millimetre long, so although they are clearly visible to the naked eye, you need a microscope if you want to use them for science. After looking at these tiny creatures under magnification for many weeks, I came to recognise a feeling almost like being underwater. Upon putting my eyes to the lens, my focus would change from the macroscopic world around me, to one of minutiae. This change in perspective was quite immersive, I almost felt like I was inhabiting that small petri dish too. Working with samples even smaller than that now, I have carried some of that mental landscape with me. It now feels commonplace to imagine tiny systems, such as crystals or molecules which were once foreign. Much of this ability to visualise small things comes from the fact that in many cases, we can actually see them too. Physics has given us many tools with which we can peer into the smallest systems that exist. Helium ion microscopy, which I have come here to carry out, is one such technique. Dr Anders Barlow runs the helium ion microscope (HIM) at this facility. He warmly welcomes me and my colleague into the quiet room and jumps straight into an enthusiastic explanation of the machine – he can tell we’re not just here for some pictures, we want to know the inner workings of the microscope too. The HIM is a bit like the more mature surveyor of minuscule worlds: the electron microscope. While a regular optical microscope uses light to illuminate a sample, the electron microscope uses electrons. When they collide with the sample these electrons can bounce off or lose energy through several mechanisms. The lost energy can go into heat or light, but more usefully, the energy might be transferred to other electrons in the sample, called secondary electrons, ejecting them like a drill removing rocks from a quarry. The secondary electrons can be detected at each point across the sample as the beam is scanned over its surface. If more electrons are detected, then the pixel at that point is brighter compared to areas where there are fewer electrons. This tells you about the topography or composition of the sample at that point on its surface and provides a grayscale image. The HIM works in the same way, but it can generate sharper images because helium ions are heavier than electrons. This is important because the increased resolution of electron and helium ion microscopes is enabled by their quantum mechanical properties - namely the particle’s wavelength. You may have heard about the wave-like nature of light, which is a basic property of quantum mechanics. Particles also have a wavelength, called the de Broglie wavelength, which is inversely proportional to their mass - the heavier the particle, the shorter the wavelength. Having a shorter wavelength allows smaller details to be resolved because of a pesky phenomenon called diffraction. Diffraction occurs when a wave encounters a gap that is of the same or smaller width to its wavelength. When this happens, the wave that emerges on the other side will be spread out. You can think of the features that you want to image as being similar to gaps, so when light, or a particle, interacts with features that are very close together it will spread out, making those features blurry or even invisible. But if you can ensure that the wavelength is smaller than whatever feature you want to see, diffraction will not occur. Interestingly, physicists can actually take advantage of diffraction, and another phenomenon called interference, when they study periodic structures like crystals, but that’s a different article! So, because the de Broglie wavelength is very short for particles with mass, like electrons, an electron microscope can generate images of higher resolution than an optical microscope. Likewise, helium ions are even heavier than electrons because they are composed of one electron, two protons, and two neutrons. This makes them about 7,000 times heavier than a single electron (electrons are very light compared to protons and neutrons!) and consequently the images they can make are very sharp. With our samples ready, lab manager Anders loads my sample into the microscope and begins lowering the pressure in its internal chamber. Having a high vacuum – approximately a billion times lower than atmospheric pressure – is essential because it prevents air from interfering with the helium beam. Making the beam is perhaps the most miraculous part of this technological feat. At the very top of the microscope’s column, there’s a tiny filament shaped like a needle. Not like a needle, in fact, it is the sharpest needle we humans can make. To achieve this, the point is shaped by first extreme heat, and then some extreme voltages until the very tip is composed of only three atoms, reverently referred to as the trimer. Once the trimer has been formed, a high voltage is applied to the needle, resulting in an extreme electric field around the tip. Next, helium gas is introduced into the chamber and individual helium atoms are attracted towards the region of the high electric field. The field is so strong that it strips each helium atom of one electron, ionising it, and these now positively charged ions are repelled from each of the three atoms in the trimer as three corresponding beams. Using sophisticated focusing fields down the length of the column allows Anders to choose only one of the beams for imaging; we are creating a picture using a beam only one atom wide! Generating such a precise beam requires constant maintenance, but once Anders is satisfied with how it looks today, he begins scanning over a large area for what we’ve come to find: tiny proteins stuck to a diamond. In an experimental PhD, you often find yourself answering small incremental questions and today I want to know how well I’ve attached these proteins to my diamond and what the coverage looks like. Other measures have told me that I probably have a lot of them, but the best way to know is to have a look! That’s what Anders does for researchers at the university; he helps us find out whether we have done a good job putting things together or coming up with new techniques. This is something he loves about his job. “I love the exposure I get to many areas of science,” he says, “Imaging of all forms is ubiquitous in research, and the HIM is applicable to most fields, so we see samples from materials science, polymers, nanomaterials, and biomaterials, through to medical technologies and devices, to cell and tissue biology of human, plant and animal origin. I never get tired of seeing what new specimens may come through the lab door.” Unfortunately, the first images we see are very dark and washed out, like a photograph taken in low-light; not many secondary electrons are making it to the detector. To combat this, Anders uses a flood gun to stop charge build up on the surface of the diamond. When the helium ions create secondary electrons, they are ejected from the surface at low speeds. As electrons are negatively charged, the bombarded surface, which now lacks electrons, will become positive and the low energy secondary electrons will be attracted back to the surface instead of making it to the detector. In an electron microscope this is avoided by coating insulators, such as my diamond, with a conductive material like gold. If the surface is conductive, the positive charge that is left behind by the secondary electrons will be offset by electrons from the metallic coating that can flow towards the sudden appearance of positive charges. In this case, the ejected electrons can escape and be detected. However, a coating like this would reduce the resolution of the image; if you want to measure proteins that are twelve nanometres high, but you put a three-nanometre coating over them, you’ll lose a lot of the resolution! To get around this, the HIM uses the flood gun, which lightly sprays the surface with electrons of low energy as the helium beam passes over. This neutralises the surface and lets the secondary electrons escape in the same way as having a conductive layer. Once Anders turns on the flood gun, the contrast increases, allowing us to zoom in on a small region of the diamond, and there they are! Thousands of spherical proteins arranged neatly across the surface, only twelve nanometres in diameter. The sight is spectacular, only one try and we got what we came for. I am three years into a PhD and I’ve become very used to the feeling of disappointment that can accompany new experimental techniques. Things rarely work out the first time around, so to see those little spheres straight away was magical. Dotted across the diamond surface is another, extra, gem. To keep protein nice and happy, you must prepare it in a salty solution. So, when the protein was deposited, some regular table salt, NaCl, came too. We can see this salt in our images as crystals in two distinctive and very beautiful patterns which you can see in the images below. Protein on the surface of my diamond. Each small pale circle is one of these spherical proteins. The first image shows a large creeping pattern, reminiscent of snowflakes or tree roots, which spreads its soft fingers across several hundred nanometres. These crystals have taken on an amorphous pattern, where the crystal structure is broken up rather than being one continuous arrangement of the atoms. The second pattern however, shown in the right image, is what a continuous NaCl crystal looks like. When large enough crystals can form without becoming amorphous they look like precise cubes of various sizes all strewn about. One of my favourite aspects about looking at very small things, is how the patterns you see often mirror those at much larger scales. Look at a fingerprint and you’ll find mountains and valleys, or the roots of a tree and you’ll see a river system. Salt (NaCl) can take on a highly ordered structure shown by the cubic crystals (left) or an amorphous pattern similar in shape to tree roots (right). The astonishing images we get from this single session are all in a day’s work for Anders. He has imaged numerous kinds of cells on all manner of interesting substrates, patterned surfaces covered in needle-like protrusions, and many kinds of man-made materials. Today, there are vials on his prep-bench which, at first glance, look much like jars of hair. However, they are not hair, in fact they are strands of carbon fibre covered in various coatings, awaiting examination. ‘What are your favourite types of samples to look at?’ I want to know. “Cell biology is fascinating,” he says. “We’ve imaged red blood cells, pancreatic cells, stem cells, and various bacterial cells in this microscope. Most often researchers are interested in cell life and death, and the HIM assists by providing high resolution images of the structure and surface topography of the cell membrane.” Recently however, Anders has been helping researchers look at polymer materials for water filtration. “These are hierarchical porous structures, meaning they’re engineered to have pore sizes that vary through the membrane. It is stunning to see the materials at low magnification with large pores, and as we zoom in and in and in, to see new pore sizes become visible at each level, like a material engineered with a fractal quality.” One of the unique things about the HIM, Anders reminds me, is that it’s not just for imaging. Since helium ions are heavy, they carry a higher momentum than electrons. “We leverage the momentum of the ions to actually modify structures too. We can create new surface properties, new devices, new technologies, on a scale that is often too small for any other fabrication technique. This is some of the most exciting work.” If you know anyone who needs some nanoscale drilling done, then the HIM is your instrument! Today’s excursion across the university campus has been thrilling. I got what I came for and I’m excited to find other projects that could benefit from the insight and beautiful images the HIM can provide. Imaging instruments have always fascinated me and I’m looking forward to witnessing how far we will be able to delve into the nanoscale world in the years to come, thanks to the fast pace of engineering and physics research. Previous article back to DISORDER Next article

  • Belly bugs: the aliens that live in our gut

    < Back to Issue 3 Belly bugs: the aliens that live in our gut By Lily McCann 10 September 2022 Edited by Andrew Lim and Zhiyou Low Illustrated by Helena Pantsis Next Figure 1 (1): "Animalcules" The figures above may look exceedingly simple to you. Beautifully drawn, yes, but nothing particularly complicated —mere ovals and lines of black ink. If I told you that the drawings were 350 years old, your interest might be piqued by that fascination we hold for all historical relics. You might wonder what the images are attempting to portray. You would only be more confused, however, were I to describe them to you using the name they were known by to the artist: “animalcules”. (2) These drawings, penned by a Dutch draughtsman in the early 1680s, are the first known depictions of bacteria from inside a human body (2). They were discovered by a man called Anthonie van Leeuwenhoek in a sample taken from between his teeth. Leeuwenhoek had examined “animalcules” in various water samples before turning to saliva, analysing the shape and movements of the little cells beneath his microscope, which he made from hand-crafted glass mounted between plates of brass. It is now known that these “animalcules” are in fact bacteria, and that they are avid colonisers not only of our mouths but every other body surface, too. These single-celled organisms parted ways with animals some 2.7 billion years ago in evolution and could not appear any more alien to ourselves (3). Though simple in structure and function, they are capable of populating the most inhospitable and extraterrestrial of environments. In fact, Deinococcus radiodurans (pictured below) can survive for years in the harsh vacuum of space (4). Figure 2 (5): Deinococcus radiodurans Freaky, right? The evolutionary distance between bacteria and ourselves does not seem to deter them from entering into the most intimate of symbiotic relationships with us. Despite their alien-ness, despite billions of years of divergent evolution, we have not lost the ability to communicate with these distant relatives of ours. In fact, communication with bacteria is a daily and essential part of our lives. The reason we can still chat with these creatures is that they are made up of the same basic “stuff” that we are: genetic material made of sugars, phosphates and nitrogen bases to dictate our functions; proteins to carry out our cellular processes; membranes to hold us together. All these aspects form a common basis for language. Just as human languages consist of orally transmitted units of sounds that can be translated and understood, bacteria can impart signals in the form of particles that can be decoded and acted upon by our own cells. One example of this kind of dialogue is the production of molecules called short chain fatty acids by bacteria that digest plant materials in our gut. These bacteria impart their gratitude to us for supplying them with suitable foods by releasing short chain fatty acids, which in turn tell our gut not to worry, signalling our cells and instructing them to reduce inflammation, build up our gut wall and even help fix our blood pressure. These molecules can also travel to the brain, where they are thought to influence the release of various signals including that of the “feel-good” hormone serotonin. (6) There’s a whole world of dialogue beyond this often referred to as the gut-brain axis of health. Research into the area has revealed that signals produced by gut bacteria are extremely influential in a number of conditions including anxiety and Parkinson’s disease. These relationships often work both ways, giving rise to a strange “chicken-and-egg” situation: those who demonstrate symptoms of such conditions are found to carry altered gut bacterial populations, and altering gut bacteria can in turn change symptoms. For example, in a cruel experiment involving the separation of infant monkeys from their mothers, the stress caused by separation changed the distribution of bacteria colonies in the infants’ guts, whilst administering a certain bacteria often imparted to infants by their mothers was found to reverse the symptoms of this stress (7). The way that bacteria can change our very emotions has significant implications for our idea of personhood. What are we, if how we act depends on the alien cells we carry in our digestive tracts? Perhaps we ought to extend our definition of identity to include these little cells that are truly, it seems, a part of how we are—another organ of our body, even. Happily (for those of you who support the philosophy of a ‘growth mindset’), the way our gut influences our minds is subject to manipulation. And we do not need a scientist to isolate and administer a certain bacterial species to us in order to change it; evidence suggests that simply altering what we eat can have a profound influence. Dietary change is known to directly alter bacterial gut colonies, and the change shown to bring about the most harmonious of conversations with our gut is increasing our intake of dietary fibre. Flooding our gut community with plentiful fibre causes a rush of signals from bacteria that promote gut health, mental health and healthy ageing. In contrast, a low fibre diet can promote diabetes, cardiovascular problems and, for pregnant mothers, may compromise the neural functioning of a developing child (8). What does this mean for medicine? Can we harness the billion-year old dialogue between our cells and the aliens that colonise our gut for our own benefit? Can we coax these residents into a mutually beneficial relationship by approaching them in the right tone? These questions are gradually gaining popularity among the scientific community as trials of probiotic administration are explored in the context of treating illnesses from depression to gastrointestinal disorders (9). We are yet to see where such studies will lead us. When the outside world seems increasingly bleak, I find comfort in the fact that within us rumbles on the activity of an intricate and disinterested universe, completely alien to and yet an integral part of ourselves. Like farmers of a garden in times of shortage, we exist in a state of codependency with the world we nurture inside our bodies. If we foster a good relationship with its inhabitants, they can protect us from the afflictions of illness, sadness and madness that threaten our species day by day. References : 1. The Royal Society. Bacteria from Leeuwenhoek's mouth [Internet]. 2022 [cited 17 March 2022]. Available from: https://royalsocietypublishing.org/cms/asset/2bf20f9f-28e1-4126-bd7e-f92950899a2b/rstb20140344f03.jpg 2. Lane N. The unseen world: reflections on Leeuwenhoek (1677) ‘Concerning little animals’ | Philosophical Transactions of the Royal Society B: Biological Sciences [Internet]. Philosophical Transactions of the Royal Society B: Biological Sciences. 2022 [cited 17 April 2022]. Available from: https://royalsocietypublishing.org/doi/10.1098/rstb.2014.0344 3. Cooper G. The Origin and Evolution of Cells [Internet]. Ncbi.nlm.nih.gov. 2022 [cited 17 April 2022]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9841/#:~:text=The%20eukaryotes%20developed%20at%20least,is%20from%20present%2Dday%20eukaryotes 4. Cox M, Battista J. Deinococcus radiodurans — the consummate survivor. Nature Reviews Microbiology. 2005;3(11):882-892. 5. 5. The European Synchroton. Deinococcus radiodurans [Internet]. 2022 [cited 5 May 2022]. Available from: https://www.esrf.fr/UsersAndScience/Experiments/MX/Research_and_Development/Biology/Deinococcus_radiodurans 6. De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti D et al. Fecal Microbiota and Metabolome of Children with Autism and Pervasive Developmental Disorder Not Otherwise Specified. PLoS ONE. 2013;8(10):e76993. 7. Bailey M, Coe C. Maternal separation disrupts the integrity of the intestinal microflora in infant rhesus monkeys. Developmental Psychobiology. 1999;35(2):146-155. 8. Buffington S, Di Prisco G, Auchtung T, Ajami N, Petrosino J, Costa-Mattioli M. Microbial Reconstitution Reverses Maternal Diet-Induced Social and Synaptic Deficits in Offspring. Cell. 2016;165(7):1762-1775. 9. Kazemi A, Noorbala A, Azam K, Eskandari M, Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clinical Nutrition. 2019;38(2):522-528. Previous article Next article alien back to

OmniSci Magazine acknowledges the Traditional Owners and Custodians of the lands on which we live, work, and learn. We pay our respects to their Elders past and present.

Subscribe to the Magazine

Follow Us on Socials

  • Facebook
  • Instagram
  • LinkedIn
UMSU Affiliated Club Logo
bottom of page